Math, asked by meghakatiyar1, 9 months ago

evaluate the limit
...


Attachments:

Answers

Answered by vedanshikhandelwal8
3

Answer:

Here is your answer!!!!!!!!!!! ☺️☺️

Mark me as brainliest....

Attachments:
Answered by Anonymous
4

Answer:

\large\boxed{\sf{2}}

Step-by-step explanation:

 \displaystyle \lim_{x \to \frac{\pi}{4}}   \frac{( { \sec }^{2} x - 2)}{( \tan x - 1) }  \\  \\  = \displaystyle \lim_{x \to \frac{\pi}{4}}   \frac{( { \tan }^{2}x + 1 - 2) }{( \tan x  - 1) }  \\  \\  = \displaystyle \lim_{x \to \frac{\pi}{4}}   \frac{ ({ \tan}^{2} x - 1)}{( \tan x - 1) }  \\  \\  = \displaystyle \lim_{x \to \frac{\pi}{4}}   \frac{( \tan x + 1)  \cancel{( \tan x - 1)} }{  \cancel{( \tan x - 1) }} \\  \\  = \displaystyle \lim_{x \to \frac{\pi}{4}}   ( \tan x + 1)  \\  \\  =  \tan \frac{\pi}{4}   + 1 \\  \\  = 1 + 1 \\  \\  = 2

Concept Map:-

  •  { \sec }^{2}  \alpha  = 1 +  { \tan}^{2} \alpha

  • ( {x}^{2}  -  {y}^{2} ) = (x + y)(x - y)
Similar questions