Math, asked by meghakatiyar1, 11 months ago

evaluate the.limit-​

Attachments:

Answers

Answered by Anonymous
6

\huge\mathfrak\purple{Hello!}

Refer to the attachment for your answer

Nice evening to you!

Attachments:
Answered by FIREBIRD
72

Answer:

Step-by-step explanation:

Answer is m² / n²

We Have :-

\lim_{ x \to 0} \frac{1-cosmx}{1-cosnx}

Solution :-

There are 2 ways to do it :-

1 way :-

\lim_{ x \to 0} \frac{1-cosmx}{1-cosnx} \\\\cosmx = 1-2sin^{2}\frac{mx}{2}  \ [ cos2x = 1 - 2sin^{2} x ]\\\\cos nx = 1-2sin^{2}\frac{nx}{2} \\\\ \lim_{x \to 0} [ \frac{1-(1-2sin^{2}\frac{mx}{2}) }{1-(1-2sin^{2}\frac{nx}{2}) } ]\\\\ \lim_{x \to 0} \frac{2sin^{2}\frac{mx}{2} }{2sin^{2}\frac{nx}{2} }  \\\\ \lim_{x \to 0} \frac{sin^{2}\frac{mx}{2} }{sin^{2}\frac{nx}{2} } \\

\lim_{x \to 0} \frac{(\frac{m}{2})^{2}[\frac{sin^{2}\frac{mx}{2} }{(\frac{m}{2} )^{2}}]}{(\frac{n}{2})^{2} [ \frac{sin^{2}\frac{nx}{2} }{(\frac{n}{2})^{2} } ] }  \\\\\frac{m^{2}}{n^{2}}  \frac{ \lim_{x \to 0} [ \frac{sin^{2}\frac{mx}{2} }{(\frac{m}{2})^{2} }] }{ \lim_{x \to 0} [ \frac{sin^{2}\frac{nx}{2} }{(\frac{n}{2})^{2} }]  }

\frac{m^{2}}{n^{2}} * \frac{1}{1} \  \  \ [  \lim_{x \to 0} \frac{sinx}{x} =1 ] \\\\\frac{m^{2}}{n^{2}}

2 way :-

\lim_{x \to 0} ( \frac{1-cosmx}{1-cosnx})\\  \\Applying\ l'Hopital\\\\ \lim_{x \to 0} \frac{0-(-sinmx*m)}{0-(-sinnx*n)} \\ \\ \lim_{x \to 0} \frac{msinmx}{nsinnx} \\\\Again\ Using\ l'Hopital\\\\ \lim_{x \to 0} \frac{m^{2}cosmx}{n^{2}cosnx} \\

\frac{m^{2}}{n^{2}} \frac{ \lim_{x \to 0} cosmx }{ \lim_{x \to 0} cosnx } \\\\\frac{m^{2}}{n^{2}}

Answer is m² / n²

Similar questions