Math, asked by kk1000, 1 month ago

Evaluate the limit. ​

Attachments:

Answers

Answered by mathdude500
5

Given Question

Evaluate the limit

\displaystyle\lim_{x \to 0} \frac{ {\bigg(1 + x\bigg)}^{ \dfrac{1}{m} }  -  {\bigg(1 + x\bigg)}^{ \dfrac{1}{n} } }{x}

 \red{\large\underline{\sf{Solution-}}}

Consider,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \frac{ {\bigg(1 + x\bigg)}^{ \dfrac{1}{m} }  -  {\bigg(1 + x\bigg)}^{ \dfrac{1}{n} } }{x}

If we substitute directly x = 0, we get

\rm \:  =  \:\ \dfrac{ {\bigg(1 + 0\bigg)}^{ \dfrac{1}{m} }  -  {\bigg(1 + 0\bigg)}^{ \dfrac{1}{n} } }{0}

\rm \:  =  \:\ \dfrac{ {\bigg(1\bigg)}^{ \dfrac{1}{m} }  -  {\bigg(1\bigg)}^{ \dfrac{1}{n} } }{0}

\rm \:  =  \:\dfrac{1 - 1}{0}

\rm \:  =  \:\dfrac{0}{0}

which is indeterminant form.

So, To evaluate, we use method of expansions.

\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \frac{ {\bigg(1 + x\bigg)}^{ \dfrac{1}{m} }  -  {\bigg(1 + x\bigg)}^{ \dfrac{1}{n} } }{x}

We know,

From binomial expansion, we have

\boxed{ \tt{ \:  {(1 + x)}^{n} = 1 + nx +  \frac{n(n - 1)}{2} {x}^{2} +  -  -  -  \: }}

So, using this, identity, we get

\rm=\displaystyle\lim_{x \to 0}\dfrac{\bigg[1 +\dfrac{1}{m}x +  \dfrac{m(m - 1)}{2} {x}^{2} +  -  - - \bigg] - \bigg[1+\dfrac{1}{n}x+\dfrac{n(n - 1)}{2} {x}^{2} +  -  - - \bigg]}{x}

\rm=\displaystyle\lim_{x \to 0}\dfrac{\bigg[\dfrac{1}{m}x +  \dfrac{m(m - 1)}{2} {x}^{2} +  -  - - \bigg] - \bigg[\dfrac{1}{n}x+\dfrac{n(n - 1)}{2} {x}^{2} +  -  - - \bigg]}{x}

\rm=\displaystyle\lim_{x \to 0}\dfrac{x\bigg \{\bigg[\dfrac{1}{m} +  \dfrac{m(m - 1)}{2} {x}^{} +  -  - - \bigg] - \bigg[\dfrac{1}{n}+\dfrac{n(n - 1)}{2} {x}^{} +  -  - - \bigg]\bigg \}}{x}

\rm=\displaystyle\lim_{x \to 0}\bigg \{\bigg[\dfrac{1}{m} +  \dfrac{m(m - 1)}{2} {x}^{} +  -  - - \bigg] - \bigg[\dfrac{1}{n}+\dfrac{n(n - 1)}{2} {x}^{} +  -  - - \bigg]\bigg \}

\rm \:  =  \:\dfrac{1}{m}  - \dfrac{1}{n}

\rm \:  =  \:\dfrac{n - m}{mn}

Hence,

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {\bigg(1 + x\bigg)}^{ \dfrac{1}{m} }  -  {\bigg(1 + x\bigg)}^{ \dfrac{1}{n} } }{x}  =  \frac{n - m}{nm} \: }}

More to know :-

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{tanx}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{log(1 + x)}{x} = 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {a}^{x} - 1 }{x} = loga \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {e}^{x} - 1 }{x} = 1 \: }}

Similar questions