Math, asked by kk1000, 7 hours ago

Evaluate the limit .​

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \tt{ \lim_{ x \to \sqrt{2}  }  \: \dfrac{ {x}^{4} - 4 }{ {x}^{2} + 3x \sqrt{2}  - 8 } } \\

 \sf{  = \lim_{ x \to \sqrt{2}  }  \: \dfrac{ ({x}^{2} - 4 )( {x}^{2}  + 4)}{ {x}^{2} + 4x \sqrt{2}   - x \sqrt{2}  - 8 } } \\

 \sf{  = \lim_{ x \to \sqrt{2}  }  \: \dfrac{ (x -  \sqrt{2}  )(x +  \sqrt{2}) ( {x}^{2}  + 4)}{ x(x + 4\sqrt{2})   -  \sqrt{2}(x   +  4 \sqrt{2})  } } \\

 \sf{  = \lim_{ x \to \sqrt{2}  }  \: \dfrac{ (x -  \sqrt{2}  )(x +  \sqrt{2}) ( {x}^{2}  + 4)}{ (x -  \sqrt{2}) (x + 4\sqrt{2})  } } \\

 \sf{  = \lim_{ x \to \sqrt{2}  }  \: \dfrac{ (x +  \sqrt{2}) ( {x}^{2}  + 4)}{ x + 4\sqrt{2}  } } \\

 \sf{  =   \dfrac{ ( \sqrt{2}  +  \sqrt{2}) ( ( \sqrt{2} )^{2}  + 4)}{  \sqrt{2}  + 4\sqrt{2}  } } \\

 \sf{  =   \dfrac{  2 \sqrt{2} \cdot ( 2  + 4)}{  5\sqrt{2}  } } \\

 \sf{  =   \dfrac{  2 \sqrt{2} \cdot6}{  5\sqrt{2}  } } \\

 \sf{  =   \dfrac{  12 \sqrt{2}}{  5\sqrt{2}  } } \\

 \sf{  =   \dfrac{  12}{  5  } } \\

Similar questions