Math, asked by alexbinu, 4 months ago

Evaluate the limit:
lim x→0 sin4x/3x​

Answers

Answered by pulakmath007
0

 \displaystyle \sf \lim_{x \to 0} \frac{sin  4x}{3x} =  \frac{4}{3}

Given :

 \displaystyle \sf \lim_{x \to 0} \frac{sin  4x}{3x}

To find :

Evaluate the limit

Formula Used :

\displaystyle \sf  \lim_{x \to 0} \frac{sin  x}{x} = 1

Solution :

Step 1 of 2 :

Write down the given limit

Here the given limit is

 \displaystyle \sf \lim_{x \to 0} \frac{sin  4x}{3x}

Step 2 of 2 :

Evaluate the limit

 \displaystyle \sf \lim_{x \to 0} \frac{sin  4x}{3x}

 \displaystyle \sf  = \lim_{x \to 0} \frac{sin  4x}{4x} \times  \frac{4}{3}

Let u = 4x

\displaystyle \sf  Then \: as \: x \to \: 0 \: we \: have \: u \to  0

 \displaystyle \sf  = \lim_{u \to 0} \frac{sin  u}{u} \times  \frac{4}{3}

 \displaystyle \sf  = 1 \times  \frac{4}{3} \:  \:  \: \bigg[ \:  \because \:\lim_{x \to 0} \frac{sin  x}{x} = 1 \bigg]

\displaystyle \sf   =  \frac{4}{3}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

#SPJ3

Similar questions