Math, asked by itzmanu48, 4 months ago

Evaluate the limit (lim(x --> 4) [(x^2 -2)/(3x - 2)]​

Answers

Answered by magumaths
0

Step-by-step explanation:

The above photo of answer can hopely helpful to you.

Attachments:
Answered by Anonymous
27

Explanation:

 \red \bigstar \:  \tt \large lim_{x \rightarrow4}( \dfrac{ {x}^{2} - 2 }{3x - 2} ) \\  \\  { \bold{ \underline{Applying \:  L - Hospital \:  rule,}}} \\  \\  \tt \leadsto \: lim_{x \rightarrow4}( \dfrac{ \dfrac{d}{dx}(x {}^{2}  - 2) }{ \dfrac{d}{dx} (3x - 2)}  \\  \\ \tt \leadsto \: lim_{x \rightarrow4}( \dfrac{ \dfrac{d}{dx}(x {}^{2} ) -  \dfrac{d}{dx}  (2)}{ \dfrac{d}{dx}(3x) -   \dfrac{d}{dx} (2) }  \\  \\  \tt \leadsto \: lim_{x \rightarrow4}( \frac{2x - 0}{3 - 0} ) \\  \\  \tt \leadsto \: lim_{x \rightarrow4}( \frac{2x}{3} ) \\  \\  \tt \leadsto \:( \frac{2 \times 4}{3} ) \\  \\  \tt \leadsto ( \frac{8}{3} )  \: \green \bigstar

Hence,

 \bull\boxed{\tt \large lim_{x \rightarrow4}( \dfrac{ {x}^{2} - 2 }{3x - 2} ) = \dfrac{8}{3}}

[ Note :- Refer to the attachment for important limits formulae. ]

Attachments:
Similar questions