Social Sciences, asked by Anonymous, 6 months ago

evaluate the limit of ( 1 + ¹/ₓ)ˣ as x approaches infinity​

Answers

Answered by SrijanShrivastava
0

  \\e = \lim_{x \to \infty } {(1 +  \frac{1}{x} )}^{x}

  \\  =\lim_{x \to \infin}({e}^{  \ln({(1 +  \frac{1}{x} )}^{x} ) })  =  {e}^{ \lim_{x \to \infty }  \frac{ \ln (1 +  \frac{1}{x} )}{ \frac{1}{x} } }

 ={e}^{   \lim _{x \to  \infty  }\frac{ \frac{1}{1 +  \frac{1}{x} } \frac{ - 1}{ {x}^{2} }  }{ -  \frac{1}{ {x}^{2} } } }

= {e}^{  \lim_{x \to \infty }  \frac{x}{1 + x} }

 = e

Similar questions