Math, asked by whitepearl434, 4 months ago

evaluate the limit of the following question.​

Attachments:

Answers

Answered by santrakabita86
2

Answer:

(x-4) (x²-1)/x²-3x-4

(x-4){(x)²-(1)²}/x²-(4-1)x-4

(x-4)(x+1)(x-1)/x²-4x+x-4

(x-4)(x+1)(x-1)/x(x-4)+1(x-4)

(x-4)(x+1)(x-1)/(x-4)(x+1)

(x-1)

Step-by-step explanation:

hope it's helps you

Answered by Anonymous
24

Explanation,

\tt \red \bigstar \:  lim_{x \rightarrow \: 4} \bigg( \dfrac{ (x - 4)( x{}^{2}  - 1) }{x {}^{2} - 3x - 4 }  \bigg) \\  \\  \\ \tt \underline{Applying \:  L - Hospital  \: rule, }  \\  \\  \\   \leadsto \tt \:  lim_{x \rightarrow \: 4}  \bigg(  \dfrac{ \dfrac{d}{dx}(x - 4)(x {}^{2} - 1)  }{ \dfrac{d}{dx}(x {}^{2}   - 3x - 4)} \bigg) \\  \\  \\ \leadsto \tt \:  lim_{x \rightarrow \: 4}  \bigg(   \dfrac{3x {}^{2} - 8x - 1 }{2x - 3}  \bigg) \\  \\  \\ \leadsto \tt \:  \bigg(  \dfrac{3 \times 4 {}^{2} - 8 \times 4 - 1 }{2 \times 4 - 3}  \bigg) \\  \\  \\  \leadsto \tt \:  \bigg(   \dfrac{48 - 32 - 1}{8 - 3}   \bigg) \\  \\  \\  \leadsto \tt \:  \bigg(    \not\dfrac{15}{5}  \bigg) \\  \\  \\  \leadsto { \underline{\tt{ \boxed{3}}}} \:  \green \bigstar

Hence,

 \dag \boxed{ \tt{lim_{x \rightarrow \: 4} \bigg( \dfrac{ (x - 4)( x{}^{2}  - 1) }{x {}^{2} - 3x - 4 }  \bigg) = 3}}

Similar questions