Math, asked by acharyakiran2004, 7 months ago

Evaluate the limit of this:​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

 \lim _{x  -> 0}   \frac{ \tan(x)  -  \sin(x) }{ {x}^{3} }

Since, it is inte form of 0/0,

So, using l'hispital rule,

  = \lim _{x -> 0} \frac{ \frac{d}{dx}( \tan(x)  -  \sin(x) ) }{ \frac{d}{dx}( {x}^{3})  }

 =  \lim _{x -> 0}  \frac{ \sec^{2} (x) -  \cos(x)  }{3 {x}^{2} }

Again using l'hospital rule,

  = \lim _{x -> 0} \frac{2 \sec^{2} (x)  \tan(x) +  \sin(x)  }{6x}

  = 2\lim _{x -> 0} \frac{ \sec^{2} (x) \tan(x)  }{6x}  +  \lim _{x -> 0} \frac{ \sin(x) }{6x}

 =  \frac{1}{3}  \lim _{x -> 0} \sec^{2} (x)  \lim _{x -> 0} \frac{ \tan(x) }{x}  +  \frac{1}{6}   \lim _{x -> 0}\frac{ \sin(x) }{x}

  = \frac{1}{3}  \times  \sec^{2} (0) \times 1 +  \frac{1}{6}   \times 1

 =  \frac{1}{3}  +  \frac{1}{6}

 =  \frac{3}{6}  =  \frac{1}{2}

Similar questions