Math, asked by Prep4JEEADV, 10 months ago

Evaluate the limit :-

 \displaystyle \lim_{x\:to\:0^-}  \frac{ {e}^{ \frac{1}{x} } + 1 }{  {e}^{ \frac{1}{x} }  -  1}

Answers

Answered by Draxillus
11

GiveN

The function  \frac{ {e}^{ \frac{1}{x} } + 1 }{ {e}^{ \frac{1}{x} } - 1} .

To Evaluate

The limit when x tends to 0.

 \displaystyle \lim_{x\:to\:0^-} \frac{ {e}^{ \frac{1}{x} } + 1 }{ {e}^{ \frac{1}{x} } - 1}

SolutioN

  \displaystyle   \lim_{x \: to \:  {0}^{ - } } \frac{1}{x} = -  \infty

  \displaystyle \lim_{x \: to \: {0}^{ - } }  {e}^{ \frac{1}{x} }  = 0 \: \:  \:  (since \:  {e}^{ -  \infty }  = 0)

 \displaystyle \lim_{x\:to\:0^-} \frac{ {e}^{ \frac{1}{x} } + 1 }{ {e}^{ \frac{1}{x} } - 1} =  \displaystyle \lim_{x\:to\:0^-} \frac{ 0 + 1 }{ 0 - 1} = - 1 Ans.

 \boxed{ \green {  Hence, \displaystyle \lim_{x\:to\:0^-} \frac{ {e}^{ \frac{1}{x} } + 1 }{ {e}^{ \frac{1}{x} } - 1} = -1 } }

Similar questions