Math, asked by beliyew804, 1 month ago

Evaluate the limit
\lim_{x \rightarrow 1}\frac{(x+1)^{4} - 2^4}{(2x+1)^{5} - 3^5}

Attachments:

Answers

Answered by MrImpeccable
19

ANSWER:

To Evaluate:

\:\:\bullet\:\:\lim_{x \to 1}\dfrac{(x+1)^4-2^4}{(2x+1)^5-3^5}

Solution:

We need to evaluate that,

\implies\lim_{x \to 1}\dfrac{(x+1)^4-2^4}{(2x+1)^5-3^5}

First we will substitute value of x as 1. So,

\implies\lim_{x \to 1}\dfrac{(x+1)^4-2^4}{(2x+1)^5-3^5}

\implies\dfrac{(1+1)^4-2^4}{(2(1)+1)^5-3^5}

\implies\dfrac{2^4-2^4}{3^5-3^5}

\implies\dfrac{0}{0}

This is the 0/0 form, which is indeterminate one. So, we apply L'Hôpital Rule.

According to L'Hôpital Rule, if

\implies\lim_{x \to a}\dfrac{f(x)}{g(x)}=\dfrac{0}{0}

Or,

\implies\lim_{x \to a}\dfrac{f(x)}{g(x)}=\dfrac{\infty}{\infty}

Then,

\implies\lim_{x \to a}\dfrac{f(x)}{g(x)}=\lim_{x \to a}\dfrac{f'(x)}{g'(x)}

We had,

\implies\lim_{x \to 1}\dfrac{(x+1)^4-2^4}{(2x+1)^5-3^5}=\dfrac{0}{0}

So, here

  • a = 1
  • f(x) = (x+1)^4 - 2^4
  • g(x) = (2x+1)^5 - 3^5

Hence,

\implies\lim_{x \to 1}\dfrac{(x+1)^4-2^4}{(2x+1)^5-3^5}=\lim_{x \to 1}\dfrac{f(x)}{g(x)}

Now, we'll calculate the derivatives of f(x) and g(x), i.e., f'(x) and g'(x).

Taking f(x) first,

\implies f(x)=(x+1)^4-2^4

\implies y=(x+1)^4-16

On dfferentiating,

\implies \dfrac{dy}{dx}=\dfrac{d}{dx}\bigg[(x+1)^4-16\bigg]

\implies \dfrac{dy}{dx}=\dfrac{d}{dx}\bigg[(x+1)^4\bigg]+\dfrac{d}{dx}\bigg[-16\bigg]

So,

\implies \dfrac{dy}{dx}=4(x+1)^3\times\dfrac{d}{dx}\bigg[(x+1)\bigg]+0

\implies \dfrac{dy}{dx}=4(x+1)^3\times 1

\implies f'(x)=4(x+1)^3- - - - (1)

Now, taking g(x),

\implies g(x)=(2x+1)^5-3^5

\implies y=(2x+1)^5-243

On dfferentiating,

\implies \dfrac{dy}{dx}=\dfrac{d}{dx}\bigg[(2x+1)^5-243\bigg]

\implies \dfrac{dy}{dx}=\dfrac{d}{dx}\bigg[(2x+1)^5\bigg]+\dfrac{d}{dx}\bigg[-243\bigg]

So,

\implies \dfrac{dy}{dx}=5(2x+1)^4\times\dfrac{d}{dx}\bigg[(2x+1)\bigg]+0

\implies \dfrac{dy}{dx}=5(2x+1)^4\times 2

\implies g'(x)=10(2x+1)^4- - - - (2)

So, we had,

\implies\lim_{x \to 1}\dfrac{(x+1)^4-2^4}{(2x+1)^5-3^5}=\lim_{x \to 1}\dfrac{f(x)}{g(x)}

\implies\lim_{x \to 1}\dfrac{f(x)}{g(x)}

Using, L'Hôpital Rule,

\implies\lim_{x \to 1}\dfrac{f'(x)}{g'(x)}

From (1) and (2),

\implies\lim_{x \to 1}\dfrac{4\!\!\!/^{\:2}\,(x+1)^3}{10\!\!\!\!\!/_{\:\:5}\,(2x+1)^4}

\implies\lim_{x \to 1}\dfrac{2(x+1)^3}{5(2x+1)^4}

Substituting the value of x as 1,

\implies\dfrac{2(1+1)^3}{5(2(1)+1)^4}

\implies\dfrac{2(2)^3}{5(3)^4}

\implies\dfrac{2\times8}{5\times81}

\implies\bf\dfrac{16}{343}

Therefore,

\implies\bf\lim_{x \to 1}\dfrac{(x+1)^4-2^4}{(2x+1)^5-3^5}=\dfrac{16}{343}

Similar questions