Math, asked by ItxAttitude, 7 days ago

Evaluate the limitlim \: x \to \: \frac{\pi}{4} \: \: \frac{ {tan}^{3}x - tanx }{cos(x + \frac{\pi}{4}) }

Explain By Step
Only Genius
No Spam

Answers

Answered by EmperorSoul
39

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm   \:  \: \frac{ {tan}^{3}x - tanx }{cos\bigg(x + \dfrac{\pi}{4} \bigg) }

If we substitute directly the value of x, we get

\rm \:  =  \: \dfrac{ {tan}^{3}\dfrac{\pi}{4} - tan\dfrac{\pi}{4} }{cos\bigg(\dfrac{\pi}{4} + \dfrac{\pi}{4} \bigg) }  \\

\rm \:  =  \: \dfrac{ {1}^{3}  - 1}{cos\dfrac{\pi}{2}}  \\

\rm \:  =  \: \dfrac{1 - 1}{0}  \\

\rm \:  =  \: \dfrac{0}{0}  \\

which is indeterminant form.

Consider, again

\rm \: \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm   \:  \: \frac{ {tan}^{3}x - tanx }{cos\bigg(x + \dfrac{\pi}{4} \bigg) }

\rm \:  =  \: \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm   \:  \: \frac{tanx( {tan}^{2}x - 1)}{cos\bigg(x + \dfrac{\pi}{4} \bigg) }  \\

\rm \:  =  \: \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm   \:  \: \frac{tanx( tanx  + 1)(tanx - 1)}{cos\bigg(x + \dfrac{\pi}{4} \bigg) }  \\

\rm \:  =  \: \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm tanx(tanx + 1) \times \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm \dfrac{tanx + 1}{cos\bigg(x + \dfrac{\pi}{4} \bigg) }  \\

\rm \:  =  \: tan\dfrac{\pi}{4}\bigg(tan\dfrac{\pi}{4}  + 1\bigg)  \times \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm  \frac{tanx + 1}{cos\bigg(x + \dfrac{\pi}{4} \bigg) }  \\

Now, we method of Substitution to solve this.

So, Substitute

\rm \: x = \dfrac{\pi}{4} - h, \:  \: as \: x \:  \to \: \dfrac{\pi}{4} \:  \: so \: h \:  \to \: 0 \\

So, above expression can be rewritten as

\rm \:  =  \: 1(1 + 1)\displaystyle\lim_{h \to 0}\rm  \frac{tan\bigg(\dfrac{\pi}{4} - h \bigg)  - 1}{cos\bigg(\dfrac{\pi}{4} + \dfrac{\pi}{4} - h \bigg) }  \\

\rm \:  =  \: 2 \: \displaystyle\lim_{h \to 0}\rm  \dfrac{\dfrac{tan\dfrac{\pi}{4} - tanh}{1 + tan\dfrac{\pi}{4}tanh}  - 1}{sinh}  \\

\rm \:  =  \: 2 \: \displaystyle\lim_{h \to 0}\rm \dfrac{\dfrac{1 - tanh}{1 + tanh}  - 1}{sinh}  \\

\rm \:  =  \: 2 \: \displaystyle\lim_{h \to 0}\rm \dfrac{\dfrac{1 - tanh - 1 - tanh}{1 + tanh}}{sinh}  \\

\rm \:  =  \: 2 \: \displaystyle\lim_{h \to 0}\rm \dfrac{\dfrac{ - 2tanh}{1 + tanh}}{sinh}  \\

\rm \:  =  \:  - 4 \: \displaystyle\lim_{h \to 0}\rm  \frac{1}{1 + tanh} \times \displaystyle\lim_{h \to 0}\rm  \frac{tanh}{sinh}

\rm \:  =  \:  - 4 \:  \times   \dfrac{1}{1 + tan0} \times \displaystyle\lim_{h \to 0}\rm  \frac{sinh}{cosh} \times  \frac{1}{sinh}

\rm \:  =  \:  - 4 \:  \times   \dfrac{1}{1 + 0} \times \displaystyle\lim_{h \to 0}\rm  \frac{1}{cosh}

\rm \:  =  \:  - 4  \times 1 \times 1

\rm \:  =  \:  - 4 \\

Hence,

\rm\implies \:\boxed{\tt{ \rm \: \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm   \:  \: \frac{ {tan}^{3}x - tanx }{cos\bigg(x + \dfrac{\pi}{4} \bigg) }  =  \:  -  \: 4 \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  = 1\:  \: }} \\

\boxed{\tt{  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x}  = 1\:  \: }} \\

\boxed{\tt{  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x}  = 1\:  \: }} \\

\boxed{\tt{  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x}  = 1\:  \: }} \\

\boxed{\tt{  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x}  = loga\:  \: }} \\

Answered by nihasrajgone2005
2

Answer:

Given expression is

\rm \: \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm \: \: \frac{ {tan}^{3}x - tanx }{cos\bigg(x + \dfrac{\pi}{4} \bigg) }

If we substitute directly the value of x, we get

\begin{gathered}\rm \: = \: \dfrac{ {tan}^{3}\dfrac{\pi}{4} - tan\dfrac{\pi}{4} }{cos\bigg(\dfrac{\pi}{4} + \dfrac{\pi}{4} \bigg) } \\ \end{gathered}  \\ \begin{gathered}\rm \: = \: \dfrac{ {1}^{3} - 1}{cos\dfrac{\pi}{2}} \\ \end{gathered} \\ \begin{gathered}\rm \: = \: \dfrac{1 - 1}{0} \\ \end{gathered}  \\ \begin{gathered}\rm \: = \: \dfrac{0}{0} \\ \end{gathered}

which is indeterminant form.

Consider, again

\rm \: \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm \: \: \frac{ {tan}^{3}x - tanx }{cos\bigg(x + \dfrac{\pi}{4} \bigg) }  \\ \begin{gathered}\rm \: = \: \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm \: \: \frac{tanx( {tan}^{2}x - 1)}{cos\bigg(x + \dfrac{\pi}{4} \bigg) } \\ \end{gathered}  \\ \begin{gathered}\rm \: = \: \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm \: \: \frac{tanx( tanx + 1)(tanx - 1)}{cos\bigg(x + \dfrac{\pi}{4} \bigg) } \\ \end{gathered}  \\ \begin{gathered}\rm \: = \: \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm tanx(tanx + 1) \times \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm \dfrac{tanx + 1}{cos\bigg(x + \dfrac{\pi}{4} \bigg) } \\ \end{gathered} \\ \begin{gathered}\rm \: = \: tan\dfrac{\pi}{4}\bigg(tan\dfrac{\pi}{4} + 1\bigg) \times \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm \frac{tanx + 1}{cos\bigg(x + \dfrac{\pi}{4} \bigg) } \\ \end{gathered}

Now, we method of Substitution to solve this.

So, Substitute

\begin{gathered}\rm \: x = \dfrac{\pi}{4} - h, \: \: as \: x \: \to \: \dfrac{\pi}{4} \: \: so \: h \: \to \: 0 \\ \end{gathered}

So, above expression can be rewritten as

\begin{gathered}\rm \: = \: 1(1 + 1)\displaystyle\lim_{h \to 0}\rm \frac{tan\bigg(\dfrac{\pi}{4} - h \bigg) - 1}{cos\bigg(\dfrac{\pi}{4} + \dfrac{\pi}{4} - h \bigg) } \\ \end{gathered}  \\ \begin{gathered}\rm \: = \: 2 \: \displaystyle\lim_{h \to 0}\rm \dfrac{\dfrac{tan\dfrac{\pi}{4} - tanh}{1 + tan\dfrac{\pi}{4}tanh} - 1}{sinh} \\ \end{gathered} </p><p>\begin{gathered}\rm \: = \: 2 \: \displaystyle\lim_{h \to 0}\rm \dfrac{\dfrac{1 - tanh}{1 + tanh} - 1}{sinh} \\ \end{gathered}  \\ \begin{gathered}\rm \: = \: 2 \: \displaystyle\lim_{h \to 0}\rm \dfrac{\dfrac{1 - tanh - 1 - tanh}{1 + tanh}}{sinh} \\ \end{gathered} \\ \begin{gathered}\rm \: = \: 2 \: \displaystyle\lim_{h \to 0}\rm \dfrac{\dfrac{ - 2tanh}{1 + tanh}}{sinh} \\ \end{gathered} \\ \rm \: = \: - 4 \: \displaystyle\lim_{h \to 0}\rm \frac{1}{1 + tanh} \times \displaystyle\lim_{h \to 0}\rm \frac{tanh}{sinh} \\ \rm \: = \: - 4 \: \times \dfrac{1}{1 + tan0} \times \displaystyle\lim_{h \to 0}\rm \frac{sinh}{cosh} \times \frac{1}{sinh} \\ \rm \: = \: - 4 \: \times \dfrac{1}{1 + 0} \times \displaystyle\lim_{h \to 0}\rm \frac{1}{cosh} \\ \rm \: = \: - 4 \times 1 \times 1 \\ \begin{gathered}\rm \: = \: - 4 \\ \end{gathered}

Hence,

\begin{gathered}\rm\implies \:\boxed{\tt{ \rm \: \displaystyle\lim_{x \to \dfrac{\pi}{4}}\rm \: \: \frac{ {tan}^{3}x - tanx }{cos\bigg(x + \dfrac{\pi}{4} \bigg) } = \: - \: 4 \: \: }} \\ \end{gathered}

Similar questions