Math, asked by tashrifhasan01, 7 hours ago

Evaluate the limit .\lim_{x \to \pi/2 }(tanx)^{(\pi/2)-x} using L’Hôpital’s rule

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \displaystyle \lim_{x \to \frac{\pi}{2} } \:  \big(  \tan(x)\big)^{ \frac{\pi}{2} - x }

 \tt{Put \:  \:  \:   \dfrac{\pi}{2}   - x= t}

 \displaystyle  \tt{ = \lim_{t \to0} \:  \left \{  tan \left( \dfrac{\pi}{2}  - t\right)\right \}^{ t} }

 \displaystyle  \tt{ = \lim_{t \to0} \:  \left \{  cot \left( t\right)\right \}^{ t} }

 \displaystyle  \tt{ = \lim_{t \to0} \:   {e}^{  \displaystyle \:  \tt{ t\ln(cot ( t))}} }

 \displaystyle  \tt{ =   {e}^{  \displaystyle \:  \tt{  \lim_{t \to0}t\ln(cot ( t))}} }

 \displaystyle  \tt{ =   {e}^{  \displaystyle \:  \tt{  \lim_{t \to0} \dfrac{\ln(cot ( t))}{ \frac{1}{t} }}} }

 \displaystyle  \tt{ =   {e}^{  \displaystyle \:  \tt{   \lim_{t \to0} \dfrac{ - cosec^{2} ( t)}{  -  cot(t)  \cdot\frac{1}{t ^{2} } }}} }

 \displaystyle  \tt{ =   {e}^{  \displaystyle \:  \tt{   \lim_{t \to0} \dfrac{ t^{2} }{ sin(t)    cos(t)   }}} }

 \displaystyle  \tt{ =   {e}^{  \displaystyle \:  \tt{   \lim_{t \to0} \dfrac{ t }{ sin(t)   } \cdot \lim_{t \to0} \dfrac{ t }{ cos(t)   }}} }

 \displaystyle  \tt{ =   {e}^{  \displaystyle \:  \tt{   1 \cdot \lim_{t \to0} \dfrac{ 1 }{  - sin(t)   }}} }

 \displaystyle  \tt{ =   {e}^{  \displaystyle \:  \tt{    - \lim_{t \to0} \dfrac{ 1 }{  sin(t)   }}} }

 \displaystyle  \tt{ =   {e}^{  \displaystyle \:  \tt{    -  \infty }} }

 \displaystyle  \tt{ =   0 }

Similar questions