Math, asked by guptaananya2005, 10 days ago

Evaluate the limit

lim \: x \:  \to \: y \:  \frac{sinx - siny}{x - y}

Please dont spam

Moderators, Brainly stars or best users​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to y} \frac{sinx - siny}{x - y}

If we substitute directly x = y, we get

\rm \:  =  \: \dfrac{siny - siny}{y - y}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form.

So, Consider again

\rm :\longmapsto\:\displaystyle\lim_{x \to y} \frac{sinx - siny}{x - y}

\rm \:  =  \: \displaystyle\lim_{x \to y} \frac{2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}{x - y}

\rm \:  =  \: \displaystyle\lim_{x \to y} 2cos\bigg[\dfrac{x + y}{2} \bigg] \times \displaystyle\lim_{x \to y} \frac{sin\bigg[\dfrac{x - y}{2} \bigg]}{x - y}

\rm \:  =  \:  2cos\bigg[\dfrac{y + y}{2} \bigg] \times \displaystyle\lim_{x  - y\to 0} \frac{sin\bigg[\dfrac{x - y}{2} \bigg]}{\dfrac{x - y}{2}  \times 2}

\rm \:  =  \:  cos\bigg[\dfrac{2y}{2} \bigg] \times \displaystyle\lim_{x  - y\to 0} \frac{sin\bigg[\dfrac{x - y}{2} \bigg]}{\dfrac{x - y}{2}}

We know

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}  \: \frac{sinx}{x} \:  =  \: 1 \: }}

\rm \:  =  \: cosy \times 1

\rm \:  =  \: cosy

Hence,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to y} \frac{sinx - siny}{x - y} \:  =  \: cosy \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}  \: \frac{sinx}{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}  \: \frac{tanx}{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}  \: \frac{log(1 + x)}{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}  \: \frac{ {e}^{x}  - 1}{x} \:  =  \: 1 \: }}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0}  \: \frac{ {a}^{x}  - 1}{x} \:  =  \: loga \: }}

Similar questions
Math, 10 days ago