Math, asked by kk1000, 1 month ago

Evaluate the limit when x tends to 2 positive . ( ques in attachment )​

Attachments:

Answers

Answered by divyamuniraj1239
0

Answer:

|

x

+

2

|

=

{

x

+

2

;

x

2

(

x

+

2

)

;

x

<

2

Step-by-step explanation:

Answered by mathdude500
8

\large\underline{\sf{Given \:Question - }}

Evaluate the following limit :-

\rm :\longmapsto\:\displaystyle\lim_{x \to 2^+} \frac{x - [x]}{x - 2}

 \red{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 2^+} \frac{x - [x]}{x - 2}

To evaluate this limit, we use method of Substitution.

So, we substitute

 \red{\rm :\longmapsto\:x = 2 + h \:  \: as \: x \:  \to \: 2, \: so \: h \:  \to \: 0}

So, given limit can be reduced to

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{2 + h - [2 + h]}{2 + h - 2}

We know,

By definition of Greatest Integer function, if

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: 2 \leqslant x &lt; 3 \: \rm \implies\:[x] = 2}}}

So, we get

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{2 + h - 2}{h}

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{h}{h}

\rm \:  =  \:1

Hence,

\purple{\bf\implies \:\:\boxed{ \tt{ \: \displaystyle\lim_{x \to 2^+} \frac{x - [x]}{x - 2} = 1 \: }}}

More to know :-

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{sinx}{x} = 1}}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{tanx}{x} = 1}}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{log(1 + x)}{x} = 1}}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {e}^{x}  - 1}{x} = 1}}

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {a}^{x}  - 1}{x} = loga}}

Similar questions