Math, asked by Anonymous, 19 days ago

Evaluate the limit without using L'Hôpital's rule:

\boxed{\lim \limits_{x \to  \frac{\pi}{4} } \dfrac{4 \sqrt{2} - ( \cos x +  \sin x) ^{5}  }{1 -  \sin2x}}

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to  \dfrac{\pi}{4} }\rm \dfrac{4 \sqrt{2} - ( \cos x + \sin x) ^{5} }{1 - \sin2x} \\

If we substitute directly the value of x, we get

\rm \:  =  \: \dfrac{4 \sqrt{2}  -  {\bigg(cos\dfrac{\pi}{4} + sin\dfrac{\pi}{4}\bigg) }^{5} }{1 -  sin\dfrac{\pi}{2}}  \\

\rm \:  =  \: \dfrac{4 \sqrt{2}  -  {\bigg( \dfrac{1}{ \sqrt{2} } +  \dfrac{1}{ \sqrt{2} }  \bigg) }^{5} }{1 -  1}  \\

\rm \:  =  \: \dfrac{4 \sqrt{2}  -  {\bigg( \dfrac{1 + 1}{ \sqrt{2}}  \bigg) }^{5} }{0}  \\

\rm \:  =  \: \dfrac{4 \sqrt{2}  -  {\bigg( \dfrac{2}{ \sqrt{2}}  \bigg) }^{5} }{0}  \\

\rm \:  =  \: \dfrac{4 \sqrt{2}  -  {\bigg(  \sqrt{2}   \bigg) }^{5} }{0}  \\

\rm \:  =  \: \dfrac{4 \sqrt{2}  -  4 \sqrt{2}  }{0}  \\

\rm \:  =  \: \dfrac{0}{0}  \\

which is indeterminant form.

So, Consider again

\rm \: \displaystyle\lim_{x \to  \dfrac{\pi}{4} }\rm \dfrac{4 \sqrt{2} - ( \cos x + \sin x) ^{5} }{1 - \sin2x} \\

We know,

\rm \: cosx + sinx

\rm \:  =  \:  \sqrt{2}\bigg(\dfrac{1}{ \sqrt{2} } sinx + \dfrac{1}{ \sqrt{2} }cosx \bigg)

\rm \:  =  \:  \sqrt{2}\bigg(sin\dfrac{\pi}{4}sinx + cos\dfrac{\pi}{4}cosx\bigg)  \\

\rm \:  =  \:  \sqrt{2}cos\bigg(x - \dfrac{\pi}{4} \bigg)  \\

So,

\rm \:  {(cosx + sinx)}^{5} = 4 \sqrt{2} \:  {cos}^{5}\bigg(x - \dfrac{\pi}{4} \bigg)  \\

So, Substitute this value in above expression, we get

\rm \: =  \:  \displaystyle\lim_{x \to  \dfrac{\pi}{4} }\rm \dfrac{4 \sqrt{2} -4 \sqrt{2} \: cos ^{5}\bigg(x - \dfrac{\pi}{4} \bigg)  }{1 - \sin2x} \\

\rm \: =  \:  \displaystyle\lim_{x \to  \dfrac{\pi}{4} }\rm \dfrac{4 \sqrt{2} \bigg[1- \: cos ^{5}\bigg(x - \dfrac{\pi}{4} \bigg)\bigg]}{1 - \sin2x} \\

Now, we use method of Substitution, to evaluate this limit.

So, Substitute

\rm \: x = \dfrac{\pi}{4} - h, \:  \: as \: x \to \: \dfrac{\pi}{4} \:  \: so \:  \: h \to \: 0 \\

So, we get

\rm \:  =  \: 4 \sqrt{2}\displaystyle\lim_{h \to 0}\rm  \frac{1 -  {cos}^{5}\bigg(\dfrac{\pi}{4} - h - \dfrac{\pi}{4} \bigg) }{1 - sin2\bigg(\dfrac{\pi}{4} - h\bigg) }  \\

\rm \:  =  \: 4 \sqrt{2}\displaystyle\lim_{h \to 0}\rm  \frac{1 -  {cos}^{5}( - h) }{1 - sin\bigg(\dfrac{\pi}{2} - 2h\bigg) }  \\

\rm \:  =  \: 4 \sqrt{2}\displaystyle\lim_{h \to 0}\rm  \frac{1 -  {cos}^{5}h}{1 - cos2h }  \\

We know, from Binomial expansion

\rm \: 1 -  {x}^{5} = (1 - x)(1 + x +  {x}^{2}  +  {x}^{3} +  {x}^{4}) \\

So, using this identity, we get

\rm \:  = 4 \sqrt{2}\displaystyle\lim_{h \to 0}\rm  \frac{(1 - cosh)(1 + cosh +  {cos}^{2}h +  {cos}^{3}h +  {cos}^{4}h}{ {2sin}^{2} h}

\rm \:  = 4 \sqrt{2} \times \displaystyle\lim_{h \to 0}\rm(1 + cosh +  {cos}^{2}h +  {cos}^{3}h +  {cos}^{4}h) \displaystyle\lim_{h \to 0}\rm  \frac{2 {sin}^{2}  \dfrac{h}{2} }{ {2sin}^{2} h}

\rm \:  = 4 \sqrt{2} \times (1 + 1 + 1 + 1 + 1) \displaystyle\lim_{h \to 0}\rm  \frac{{sin}^{2}  \dfrac{h}{2} }{ {sin}^{2} h}

\rm \:  = 20\sqrt{2}  \displaystyle\lim_{h \to 0}\rm  \frac{{sin}^{2}  \dfrac{h}{2} }{  {\bigg(2 \: sin\dfrac{h}{2} \: cos\dfrac{h}{2} \bigg) }^{2} }

\rm \:  = 20\sqrt{2}  \displaystyle\lim_{h \to 0}\rm  \frac{{sin}^{2}  \dfrac{h}{2} }{ 4 {sin}^{2}\dfrac{h}{2} \:  {cos}^{2}\dfrac{h}{2} }  \\

\rm \:  = 5\sqrt{2}  \displaystyle\lim_{h \to 0}\rm  \frac{1 }{   {cos}^{2}\dfrac{h}{2} }  \\

\rm \:  =  \: 5 \sqrt{2} \times 1 \\

\rm \:  =  \: 5 \sqrt{2}  \\

Hence,

 \: \boxed{\tt{ \rm \: \:  \displaystyle\lim_{x \to  \dfrac{\pi}{4} }\rm \dfrac{4 \sqrt{2} - ( \cos x + \sin x) ^{5} }{1 - \sin2x} = 5 \sqrt{2} \:  \: }}  \\

Similar questions