Math, asked by nayanvartak, 5 months ago

evaluate the problem​

Attachments:

Answers

Answered by sreeh123flyback
1

Step-by-step explanation:

this is the answer okkkkkkkkkkkkk

Attachments:
Answered by Asterinn
2

\displaystyle\sf\:\lim\limits_{x\to -3}\:\bigg[\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}\bigg]

\displaystyle\sf\:\lim\limits_{x\to -3}\:\bigg[\dfrac{x^2+8x+15 + x^2+4x+3}{(x^2+4x+3 )\:{(x^2+8x+15)} } \bigg]

\displaystyle\sf\:\lim\limits_{x\to -3}\:\bigg[\dfrac{2 {x}^{2} + 12x + 18 }{(x^2+4x+3 )\:{(x^2+8x+15)} } \bigg]

\displaystyle\sf\:\lim\limits_{x\to -3}\:\bigg[\dfrac{2 ({x}^{2} + 6x + 9) }{(x^2+4x+3 )\:{(x^2+8x+15)} } \bigg]

Now ,

x²+6x+9

⟹ x²+3x+3x+9

⟹ x (x+3)+3(x+3)

⟹ (x+3)(x+3) = (x+3)²

⟹x²+6x+9 = (x+3)²

x²+4x+3

⟹ x²+3x+x+3

⟹ x(x+3)+ 1(x+3)

⟹ (x+1)(x+3)

⟹ x²+4x+3 = (x+1)(x+3)

x²+8x+15

⟹ x²+3x+5x+15

⟹ x(x+3)+ 5(x+3)

⟹ (x+5)(x+3)

⟹ x²+8x+15= (x+5)(x+3)

\displaystyle\sf\:\lim\limits_{x\to -3}\:\bigg[\dfrac{2  {({x} + 3)}^{2}  }{(x + 1)(x + 3)(x + 3)(x + 5) \ } \bigg]

\displaystyle\sf\:\lim\limits_{x\to -3}\:\bigg[\dfrac{2  {({x} + 3)}^{2}  }{(x + 1) {(x + 3)}^{2} (x + 5) \ } \bigg]

\displaystyle\sf\:\lim\limits_{x\to -3}\:\bigg[\dfrac{2   }{(x + 1)  (x + 5) \ } \bigg]

Now put x = -3

\dfrac{2   }{( - 3 + 1)  ( - 3+ 5) \ }

\dfrac{2   }{ - 2   \times 2  }

\dfrac{ - 2   }{ 4}

\dfrac{ - 1  }{ 2 }

Answer : -1/2

Similar questions