Math, asked by sanjakumar9, 2 days ago

Evaluate the product ( a -1/a)(a+1/a)(a^2+1/a^2) for a = -2.​

Answers

Answered by Anonymous
4

Step-by-step explanation:

 \bold \color{red}{ \mathfrak{question : }}

 = (a -  \frac{1}{a} )(a +  \frac{1}{a} )( {a}^{2}  +  \frac{1}{ {a}^{2} } ) \: \:  \:  for \: a =  - 2

 \bold \color{blue}{solution : }

 = {{{( - 2) - ( \frac{1}{ - 2} )}}}( - 2 + ( \frac{1}{ - 2} ))( { - 2}^{2}  +  \frac{1}{ ({ - 2})^{2} } )

kindly use( if it's important ) "{}" (curly brackets) after the parentheses are used.

 = ( - 2+  \frac{1}{2} )( - 2 -  \frac{1}{2} )(4 +  \frac{1}{4} )

now take LCM of every denominators in each brackets( parentheses ).

 = (  \frac{ - 2  \times 2 + 1}{2} )( \frac{ - 2 \times 2 - 1}{2} )( \frac{4 \times 4 + 1}{4} )

 = ( \frac{ - 4 + 1}{2} )( \frac{ - 4 - 1}{2} )( \frac{16 + 1}{4} )

 = ( \frac{ - 3}{2} )( \frac{ - 5}{2} )( \frac{17}{4} )

 =  \frac{15 \times 17}{4 \times 4}

 =  \frac{255}{16}

(a -  \frac{1}{a} )(a +  \frac{1}{a} )( {a}^{2}  +  \frac{1}{ {a}^{2} } )  \:  \: for \: a =  - 2  \implies  \bold{\frac{255}{16} }

Similar questions