Math, asked by Samkeet7600, 1 year ago

Evaluate the product (3\vec a-5\vec b). (2\vec a\ + 7\vec b).

Answers

Answered by MaheswariS
0

Answer:

\bf(3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})=6\:|\overrightarrow{a}|^2+11\:\overrightarrow{a}.\overrightarrow{b}-35\:|\overrightarrow{b}|^2

Step-by-step explanation:

(3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})

Using, distributive laws

\boxed{\overrightarrow{a}.(\overrightarrow{b}+\overrightarrow{c})=\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{a}.\overrightarrow{c}}

\boxed{(\overrightarrow{a}+\overrightarrow{b}).\overrightarrow{c})=\overrightarrow{a}.\overrightarrow{c}+\overrightarrow{b}.\overrightarrow{c}}

=6\overrightarrow{a}.\overrightarrow{a}+21\:\overrightarrow{a}.\overrightarrow{b}-10\:\overrightarrow{b}.\overrightarrow{a}-35\:\overrightarrow{b}.\overrightarrow{b}

Using

\boxed{\text{Scalar product is commutative }\implies\:\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}}

\boxed{\overrightarrow{a}.\overrightarrow{a}=|\overrightarrow{a}|^2}

=6\:|\overrightarrow{a}|^2+21\:\overrightarrow{a}.\overrightarrow{b}-10\:\overrightarrow{a}.\overrightarrow{b}-35\:|\overrightarrow{b}|^2

=6\:|\overrightarrow{a}|^2+11\:\overrightarrow{a}.\overrightarrow{b}-35\:|\overrightarrow{b}|^2

\implies\boxed{(3\overrightarrow{a}-5\overrightarrow{b}).(2\overrightarrow{a}+7\overrightarrow{b})=6\:|\overrightarrow{a}|^2+11\:\overrightarrow{a}.\overrightarrow{b}-35\:|\overrightarrow{b}|^2}

Answered by ujalasingh385
0

Answer:-

\mathbf{6\:|\vec{a}|^2+11\:\vec{a}.\vec{b}-35\:|\vec{b}|^2}}

Step-by-step explanation:

(3\vec{a}-5\vec{b}).(2\vec{a}+7\vec{b})

Using, distributive laws

\mathbf{\overrightarrow{a}.(\overrightarrow{b}+\overrightarrow{c})=\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{a}.\overrightarrow{c}}

\mathbf{(\overrightarrow{a}+\overrightarrow{b}).\overrightarrow{c})=\overrightarrow{a}.\overrightarrow{c}+\overrightarrow{b}.\overrightarrow{c}}

=6\vec{a}.\vec{a}+21\:\vec{a}.\vec{b}-10\:\vec{b}.\vec{a}-35\:\vec{b}.\vec{b}

Using

\mathbf{\text{Scalar product is commutative }\implies\:\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{a}}

\vec{a}.\vec{a}=|\vec{a}|^2

=6\:|\vec{a}|^2+21\:\vec{a}.\vec{b}-10\:\vec{a}.\vec{b}-35\:|\vec{b}|^2

= 6\:|\vec{a}|^2+11\:\vec{a}.\vec{b}-35\:|\vec{b}|^2

\mathbf{\implies(3\overrightarrow{a}-5\overrightarrow{b}) (2\overrightarrow{a}+7\overrightarrow{b})=6\:|\overrightarrow{a}|^2+11\:\overrightarrow{a}.\overrightarrow{b}-35\:|\overrightarrow{b}|^2}

Similar questions