evaluate the (sec sqare theta) ( cosec square theta- 1)
Answers
Step-by-step explanation:
To prove : (\sec^2\theta -1)(\csc^2\theta-1)=1(sec
2
θ−1)(csc
2
θ−1)=1
Proof :
Taking LHS,
LHS=(\sec^2\theta -1)(\csc^2\theta-1)LHS=(sec
2
θ−1)(csc
2
θ−1)
Using Trigonometric identity,
\sec^2\theta -1=\tan^2\thetasec
2
θ−1=tan
2
θ
\csc^2\theta -1=\cot^2\thetacsc
2
θ−1=cot
2
θ
LHS=(\tan^2\theta)(\cot^2\theta)LHS=(tan
2
θ)(cot
2
θ)
We know, \cot^2\theta=\frac{1}{\tan^2\theta}cot
2
θ=
tan
2
θ
1
LHS=\tan^2\theta\times \frac{1}{\tan^2\theta}LHS=tan
2
θ×
tan
2
θ
1
LHS=1LHS=1
LHS=RHSLHS=RHS
Hence proved.
Answer:
thanks for free points hope it is helpful to you mark me as brain list and follow me
Step-by-step explanation:
To prove : (\sec^2\theta -1)(\csc^2\theta-1)=1(sec
2
θ−1)(csc
2
θ−1)=1
Proof :
Taking LHS,
LHS=(\sec^2\theta -1)(\csc^2\theta-1)LHS=(sec
2
θ−1)(csc
2
θ−1)
Using Trigonometric identity,
\sec^2\theta -1=\tan^2\thetasec
2
θ−1=tan
2
θ
\csc^2\theta -1=\cot^2\thetacsc
2
θ−1=cot
2
θ
LHS=(\tan^2\theta)(\cot^2\theta)LHS=(tan
2
θ)(cot
2
θ)
We know, \cot^2\theta=\frac{1}{\tan^2\theta}cot
2
θ=
tan
2
θ
LHS=\tan^2\theta\times \frac{1}{\tan^2\theta}LHS=tan
2
θ×
tan
2
θ
1
LHS=1LHS=1