Evaluate the sum given
Attachments:
Answers
Answered by
4
Answer
162
Step by step explanation
( \frac { 27 } { 64 } ) ^ { - 2 / 3 } \times ( \frac { 81 } { 49 } ) ^ { 3 / 2 } \div ( \frac { 343 } { 8 } ) ^ { - 1 }
Calculate \frac{27}{64}=0.421875 to the power of -\frac{2}{3}\approx -0.666666667 and get \frac{16}{9}\approx 1.777777778.
\frac{\frac{16}{9}\times \left(\frac{81} Calculate \frac{81}{49}\approx 1.653061224 to the power of \frac{3}{2}=1.5 and get \frac{729}{343}\approx 2.125364431.{49}\right)^{\frac{3}{2}}}{\left(\frac{343}{8}\right)^{-1}}\approx 162
\frac{\frac{16}{9}\times \left(\frac{729}{343}\right)}{\left(\frac{343}{8}\right)^{-1}}\approx 162
Multiply \frac{16}{9}\approx 1.777777778 and \frac{729}{343}\approx 2.125364431 to get \frac{1296}{343}\approx 3.778425656.
\frac{\frac{1296}{343}}{\left(\frac{343}{8}\right)^{-1}}\approx 162
Calculate \frac{343}{8}=42.875 to the power of -1 and get \frac{8}{343}\approx 0.023323615.
\frac{\frac{1296}{343}}{\frac{8}{343}}\approx 162
Divide \frac{1296}{343}\approx 3.778425656 by \frac{8}{343}\approx 0.023323615 by multiplying \frac{1296}{343}\approx 3.778425656 by the reciprocal of \frac{8}{343}\approx 0.023323615.
\frac{1296}{343}\times \left(\frac{343}{8}\right)\approx 162
Multiply \frac{1296}{343}\approx 3.778425656 and \frac{343}{8}=42.875 to get 162.
162
162
Step by step explanation
( \frac { 27 } { 64 } ) ^ { - 2 / 3 } \times ( \frac { 81 } { 49 } ) ^ { 3 / 2 } \div ( \frac { 343 } { 8 } ) ^ { - 1 }
Calculate \frac{27}{64}=0.421875 to the power of -\frac{2}{3}\approx -0.666666667 and get \frac{16}{9}\approx 1.777777778.
\frac{\frac{16}{9}\times \left(\frac{81} Calculate \frac{81}{49}\approx 1.653061224 to the power of \frac{3}{2}=1.5 and get \frac{729}{343}\approx 2.125364431.{49}\right)^{\frac{3}{2}}}{\left(\frac{343}{8}\right)^{-1}}\approx 162
\frac{\frac{16}{9}\times \left(\frac{729}{343}\right)}{\left(\frac{343}{8}\right)^{-1}}\approx 162
Multiply \frac{16}{9}\approx 1.777777778 and \frac{729}{343}\approx 2.125364431 to get \frac{1296}{343}\approx 3.778425656.
\frac{\frac{1296}{343}}{\left(\frac{343}{8}\right)^{-1}}\approx 162
Calculate \frac{343}{8}=42.875 to the power of -1 and get \frac{8}{343}\approx 0.023323615.
\frac{\frac{1296}{343}}{\frac{8}{343}}\approx 162
Divide \frac{1296}{343}\approx 3.778425656 by \frac{8}{343}\approx 0.023323615 by multiplying \frac{1296}{343}\approx 3.778425656 by the reciprocal of \frac{8}{343}\approx 0.023323615.
\frac{1296}{343}\times \left(\frac{343}{8}\right)\approx 162
Multiply \frac{1296}{343}\approx 3.778425656 and \frac{343}{8}=42.875 to get 162.
162
Similar questions