Math, asked by Anonymous, 8 months ago

Evaluate The Value of :

\displaystyle \sf{\lim_{x\ \to\ 0}\ \dfrac{x^2}{1\ -\ \sqrt[3]{1\ +\ x^2}}}

Don't Spam !!​

Answers

Answered by BrainlyPopularman
75

GIVEN :

 \\ \implies \displaystyle \sf{\lim_{x\ \to\ 0}\ \dfrac{x^2}{1\ -\ \sqrt[3]{1\ +\ x^2}}} \\

TO FIND :

Value of limit = ?

SOLUTION :

• Let the function –

 \\ \sf \implies y =  \displaystyle \sf{\lim_{x\ \to\ 0}\ \dfrac{x^2}{1\ -\ \sqrt[3]{1\ +\ x^2}}} \\

• Now rationalization of denominator –

• We know that –

 \\ \sf \to {a}^{3} -  {b}^{3} = (a - b)( {a}^{2}  + ab +  {b}^{2}) \\

 \\ \sf \to  (a - b) =  \dfrac{{a}^{3} -  {b}^{3}}{( {a}^{2}  + ab +  {b}^{2})} \\

• So that –

 \\ \sf \implies y =  \displaystyle \sf{\lim_{x\ \to\ 0}\ \dfrac{x^2[ {(1)}^{2} + (1)(\sqrt[3]{1\ +\ x^2}) + ({\sqrt[3]{1\ +\ x^2}})^{2} ]}{(1)^{3} \ -\ (\sqrt[3]{1\ +\ x^2})^{3} }} \\

 \\ \sf \implies y =  \displaystyle \sf{\lim_{x\ \to\ 0}\ \dfrac{x^2[1 + (\sqrt[3]{1\ +\ x^2}) + ({\sqrt[3]{1\ +\ x^2}})^{2} ]}{1\ -\ (1\ +\ x^2)}} \\

 \\ \sf \implies y =  \displaystyle \sf{\lim_{x\ \to\ 0}\ \dfrac{x^2[1 + (\sqrt[3]{1\ +\ x^2}) + ({\sqrt[3]{1\ +\ x^2}})^{2} ]}{1\ -\ 1\  - \ x^2}} \\

 \\ \sf \implies y =  \displaystyle \sf{\lim_{x\ \to\ 0}\ \dfrac{ \cancel{x^2}[1 + (\sqrt[3]{1\ +\ x^2}) + ({\sqrt[3]{1\ +\ x^2}})^{2} ]}{- \  \cancel{x^2}}} \\

 \\ \sf \implies y = (-1) \displaystyle \sf{\lim_{x\ \to\ 0}[1 + (\sqrt[3]{1\ +\ x^2}) + ({\sqrt[3]{1\ +\ x^2}})^{2} ]} \\

• Now Apply limits –

 \\ \sf \implies y = (-1)[1 + (\sqrt[3]{1\ +\ (0)^2}) + ({\sqrt[3]{1\ +\ (0)^2}})^{2}] \\

 \\ \sf \implies y = (-1)[1 + (\sqrt[3]{1}) + ({\sqrt[3]{1}})^{2}] \\

 \\ \sf \implies y = (-1) [1 + 1 + 1]\\

 \\ \sf \implies y = (-1) [3]\\

 \\ \large\implies { \boxed{ \sf y =-3}} \\


Anonymous: Fabulous!
BrainlyPopularman: Thank uhh ♥️
Anonymous: Awesome Ak ( ◜‿◝ )♡( ˘ ³˘)♥
BrainlyPopularman: Thank you ninja ♥️
Anonymous: ( ◜‿◝ )♡
Answered by Anonymous
65

Answer :

-3

Explanation :

We know, lim x => 0 ( 1 + x )^n ≈ ( 1 + nx )

=> \displaystyle \sf{\lim_{x\ \to\ 0}\ \dfrac{x^2}{1\ -\ \sqrt[3]{1\ +\ x^2}}}

=> \displaystyle \sf{\lim_{x\ \to\ 0}\ \dfrac{x^2}{1\ -\ {1\ +\ x^2}}}1/3

=> \displaystyle \sf{\lim_{x\ \to\ 0}\ \dfrac{x^2}{1\ -\ {1\ +\ 1/3 \ x^2}}}

=> \displaystyle \sf{\lim_{x\ \to\ 0}\ \dfrac{x^2}{{1/3\ x^2}}}

=> cancel ( x^2 )

=> -1 / 3

=> -3

‏‏‎ ‎

☆ Refer the attachment ⬆️

☆ ❥ So, It's Done ❥ !!

‏‏‎ ‎

Attachments:
Similar questions