Math, asked by XxCharmingGuyxX, 2 months ago

evaluate the value :-

 \frac{ \cos(45) }{ \sec(30) +  \csc(30)  }

Answers

Answered by TRISHNADEVI
5

SOLUTION :

 \\  \\

To evaluate :-

 \\

  •  \:  \:  \bigstar \:  \:  \:  \:  \bold{ \dfrac{Cos(45) }{Sec(30) + Csc(30) }}\\  \\   \underline{ \large{ \rm{Or,}}} \\  \\  \:  \: \bigstar \:  \:  \:  \:  \bold{ \dfrac{Cos \: 45 \degree }{Sec \: 30 \degree + Csc \: 30 \degree }}

 \\

Important Values :-

 \\

  •  \bigstar \:  \:  \rm{Cos  \: 45 \degree  =  \cfrac{1}{ \sqrt{2}}}

  •  \bigstar \:  \:  \rm{Sec \:  30 \degree  =  \cfrac{2}{ \sqrt{3}}}

  •  \bigstar \:  \:  \rm{Csc  \: 30 \degree = 2}

 \\

Evaluation :-

 \\

  • By putting the Value, we get,

 \\

 \bigstar \:  \: \:  \:   \sf{\dfrac{Cos \: 45 \degree }{Sec \: 30 \degree + Csc \: 30 \degree }} \\  \\  \sf{=  \dfrac{\cfrac{1}{ \sqrt{2}}}{ \cfrac{2}{ \sqrt{3}}  + 2}}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf{=  \dfrac{\cfrac{1}{ \sqrt{2}}}{ \cfrac{2 + 2 \sqrt{3}}{ \sqrt{3}}}}  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf{= \dfrac{\cfrac{1}{ \sqrt{2}}}{ \cfrac{2 \: ( \: 1 + \sqrt{3} \: )}{ \sqrt{3}}}}  \:  \: \\  \\   \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \sf{=  \dfrac{1}{ \sqrt{2} }  \times   \cfrac{ \sqrt{3} }{2(1 +  \sqrt{3} )}}  \:  \:  \:   \:  \: \:  \:  \:  \\  \\  \sf{ =   \dfrac{ \sqrt{3} }{2 \sqrt{2} \:  (1 +  \sqrt{3} )}}  \\  \\  \:  \:  \:  \:  \:  =  \large{ \sf{\dfrac{ \sqrt{3} }{2 \sqrt{2} \: ( \sqrt{3}  + 1)}}}

 \\

  • By rationalizing the terms, we get,

 \\

 \bigstar \:  \: \sf{ \dfrac{ \sqrt{3} }{2 \sqrt{2} \: ( \sqrt{3}  + 1)}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \:  \:  \:  \:  \:  \:  \: \sf{= \dfrac{ \sqrt{3} }{2 \sqrt{2} \: ( \sqrt{3}  + 1)}} \times  \dfrac{ \sqrt{3}  - 1}{ \sqrt{3}  - 1} \\  \\   \:  \:  \:  \:  \: \sf{ =  \dfrac{ \sqrt{3} \:  \: ( \sqrt{3}   - 1)}{2 \sqrt{2} \: ( \sqrt{3} + 1) \: ( \sqrt{3}    - 1)} }  \\  \\    \sf{=   \dfrac{3 -  \sqrt{3} }{2 \sqrt{2} \: (3 - 1) }}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\    \sf{=  \dfrac{3 -  \sqrt{3} }{2 \sqrt{2}  \times 2}}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \sf{ = \large{ \dfrac{3 -  \sqrt{3} }{4 \sqrt{2}}}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:

 \\

  • By multiply both the numerator and denominator by √2, we get,

 \\

  \:  \: \bigstar \:  \: \:  \:   \sf{\dfrac{3 -  \sqrt{3} }{4 \sqrt{2}}} \\  \\  \sf{ = \dfrac{3 -  \sqrt{3} }{4 \sqrt{2}} \times  \dfrac{ \sqrt{2} }{ \sqrt{2} } }  \:  \:  \:  \\  \\  \sf{ = \dfrac{(3 -  \sqrt{3} ) \times  \sqrt{2}}{4 \sqrt{2} \times  \sqrt{2}  }}  \:  \: \\  \\   \:  \:  \:  \: \sf{ =  \dfrac{3 \sqrt{2} -  (\sqrt{3}  \times  \sqrt{2} ) }{4 \times 2} } \\  \\   =\large{ \boxed{ \sf{ \:  \dfrac{3 \sqrt{2} -  \sqrt{6}  }{8} } \: }}

 \\

 \therefore \:  \: \boxed{ \rm{  \:  \: \dfrac{Cos \: (45) }{Sec \: (30) + Csc \: (30) } = \dfrac{3 \sqrt{2} -  \sqrt{6}}{8} \:  \: }}

Answered by temporarygirl
1

Hi there!

Plz check the attachment for answer..

Attachments:
Similar questions