Math, asked by akharwar62, 7 months ago

evaluate these question ​

Attachments:

Answers

Answered by ZzyetozWolFF
1

Answer:

  • 1/5

  • 49/729

  • 25/72

Step-by-step explanation:

 \sf  \: (ii)(5 ^{ - 4} ) \times  {5}^{ - 5}

\sf \implies \:  \dfrac{ \dfrac{1}{625} }{ { {5}^{ - 8} } }  ( {5}^{ - 5} )

\sf \implies \:  \dfrac{ \dfrac{1}{625} }{ \dfrac{1}{390625} } ( {5}^{ - 5} )

 \sf \implies \: 625( {5}^{ - 5} )

\sf \implies \: 625  \times   \dfrac{1}{3125}

 \implies \:  \dfrac{1}{5}  =  {5}^{ - 1}

------------------------------------

\sf iii) \:   \dfrac{ ({9}^{ - 5})  \times ( {7}^{2}) }{ {3}^{ - 4} }

 \sf \implies \:  \dfrac{ \dfrac{1}{59049} }{ {3}^{ - 4} }  {(7}^{2})

\sf \implies \:  \dfrac{ \dfrac{1}{59049} }{ {3}^{ - 4} } (49)

\sf \implies \:  \dfrac{ \dfrac{49}{59049} }{ {3}^{ - 4} }

\sf \implies \:  \frac{49}{729}

------------------------------------

\sf iv) \: (4 ^{ - 2}  \times  {3}^{ - 2} ) \times  {5}^{2}  \div  {2}^{ - 1}  \times (7 ^{ - 1}  {)}^{0}

\sf \implies \:  \dfrac{(4 ^{ - 2})( {3}^{ - 2})( {5}^{2})   }{ {2}^{ - 1} }  {(7 - 1)}^{0}

\sf \implies \:   \dfrac{ \dfrac{1}{16}( {3}^{ - 2} )( {5}^{2} ) }{ {2}^{ - 1} } {(7 - 1)}^{0}

 \implies \dfrac{25}{72}

What you need to know ?

Here laws of exponents are used :-

  • When multiplying like bases, the bases remains same while exponents gets add up.

a² × a²= a⁴

  • When dividing like bases, the bases remain same while exponents get subtracted.

a² ÷ a² = a

a.a.a = a³

  • Any non - zero number raised to the power zero is one.

a^0 = 1

  • raising a power to a power multiplies the powers together.

(a¹)² = a²

A fraction raised to a negative power is reciprocal of the original.

Similar questions