Math, asked by saurabh000345, 1 year ago

evaluate this expression.

Attachments:

Answers

Answered by siddhartharao77
3
 \lim_{n \to 0}  ( \frac{ \sqrt{1 + x} -  \sqrt{1-x} }{x} )

= >  \frac{( \sqrt{1 + x} -  \sqrt{1 - x}) * ( \sqrt{1 + x} +  \sqrt{1 - x} )  }{x( \sqrt{1 + x} +  \sqrt{1 - x}) }

= >  \frac{ \sqrt{(1 + x})^2 - ( \sqrt{1 - x})^2  }{x( \sqrt{1 + x} +  \sqrt{1 - x}  )}

= >  \frac{1 + x - 1 + x}{x( \sqrt{1 + x} +  \sqrt{1 - x}) }

= >  \frac{2x}{ x(\sqrt{1 + x} +  \sqrt{1 - x})  }

= >  \frac{2}{ \sqrt{1 + x} +  \sqrt{1 - x}  }

Now,

 \lim_{n \to 0} ( \frac{2}{ \sqrt{1 + x} +  \sqrt{1 - x}  } )

 = \ \textgreater \  \frac{2}{ \sqrt{1 + 0} +  \sqrt{1 - 0} }

= \ \textgreater \   \frac{2}{2}

= > 1.



Hope this helps!

siddhartharao77: :-)
saurabh000345: thanks a lot pal!
siddhartharao77: if you line the answer then brainliest it or rate the answer by giving stars..
siddhartharao77: *like
Answered by Anonymous
1
Hi,

Please see the attached file!


Thanks
Attachments:
Similar questions