Math, asked by Anonymous, 4 months ago

Evaluate this integral
 \bf{ 1 \atop  \huge \int _{ \small \atop0}} x(tan^{ - 1} x^{2} )dx
Please answer only If you know the answer.​

Answers

Answered by Anonymous
118

♣ Qᴜᴇꜱᴛɪᴏɴ :

Evaluate the given integral :

\boxed{\sf{\int _0^1\:x\left(tan^{-1}x^2\right)dx}}

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{\int _0^1\:x\left(tan^{-1}x^2\right)dx=\dfrac{\pi }{8}-\dfrac{1}{4}\ln \left(2\right)\quad }}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\large\boxed{\sf{\int _0^1\:x\arctan \left(x^2\right)dx}}

__________________________

\bf{Step\:\:1:\ Apply\:\: Integration\:\: By \:\:Parts}

_______________________

Integration By Parts definition :

\sf{\int \:uv'=uv-\int \:u'v}

\sf{u=\arctan \left(x^2\right)}

\sf{v'=x}

\underline{\underline{u^{\prime}=\dfrac{d}{d x}\left(\arctan \left(x^{2}\right)\right)}}                                                

═════════════

Steps :

\text { Apply the chain rule: } \dfrac{1}{\left(x^{2}\right)^{2}+1} \dfrac{d}{d x}\left(x^{2}\right)

=\dfrac{1}{\left(x^2\right)^2+1}\dfrac{d}{dx}\left(x^2\right)

=\dfrac{1}{\left(x^2\right)^2+1}\cdot \:2x

\sf{=\dfrac{2x}{x^4+1}}

═════════════

\underline{\underline{v=\int x d x}}

═════════════

Steps :

\text { Apply the Power Rule: } \int x^{a} d x=\dfrac{x^{a+1}}{a+1}, \quad a \neq-1

=\dfrac{x^{1+1}}{1+1}

=\dfrac{x^2}{2}

\text { Add a constant to the solution }

\sf{=\dfrac{x^2}{2}+C}

═════════════

\sf{\int \:uv'=uv-\int \:u'v}

\sf{=\left[\arctan \left(x^2\right)\dfrac{x^2}{2}-\int \dfrac{2x}{x^4+1}\cdot \dfrac{x^2}{2}dx\right]^1_0}

=\left[\dfrac{x^2\arctan \left(x^2\right)}{2}-\int \dfrac{2x}{x^4+1}\cdot \dfrac{x^2}{2}dx\right]^1_0

=\left[\dfrac{x^2\arctan \left(x^2\right)}{2}-\int \dfrac{x^3}{x^4+1}dx\right]^1_0

\sf{=\left[\dfrac{1}{2}x^2\arctan \left(x^2\right)-\int \dfrac{x^3}{x^4+1}dx\right]^1_0}

Solve \int \dfrac{x^3}{x^4+1}dx

═════════════

Steps :

\text { Apply u - substitution: } u=x^{4}+1

=\int \dfrac{1}{4u}du

\begin{aligned}&\text { Take the constant out: } \int a \cdot f(x) d x=a \cdot \int f(x) d x\\&=\dfrac{1}{4} \cdot \int \dfrac{1}{u} d u\end{aligned}

\begin{aligned}&\text { Use the common integral: } \int \dfrac{1}{u} d u=\ln (|u|)\\&=\dfrac{1}{4} \ln |u|\end{aligned}

\begin{array}{l}\text { Substitute back } u=x^{4}+1 \\\\=\dfrac{1}{4} \ln \left|x^{4}+1\right|\end{array}

═════════════

\sf{=\left[\dfrac{1}{2}x^2\arctan \left(x^2\right)-\dfrac{1}{4}\ln \left|x^4+1\right|\right]^1_0}

_________________________

\bf{Step\:\:2\:: Compute\:\: the\:\: boundaries}

_________________________

\sf{\int _a^bf\left(x\right)dx=F\left(b\right)-F\left(a\right)=\lim _{x\to \:b-}\left(F\left(x\right)\right)-\lim _{x\to \:a+}\left(F\left(x\right)\right)}

\lim _{x \rightarrow 0+}\left(\dfrac{1}{2} x^{2} \arctan \left(x^{2}\right)-\dfrac{1}{4} \ln \left|x^{4}+1\right|\right)

═════════════

Steps :

\text { Plug in the value } x=0

=\dfrac{1}{2}\cdot \:0^2\arctan \left(0^2\right)-\dfrac{1}{4}\ln \left|0^4+1\right|

=0

═════════════

\lim _{x\to \:1-}\left(\dfrac{1}{2}x^2\arctan \left(x^2\right)-\dfrac{1}{4}\ln \left|x^4+1\right|\right)

═════════════

Steps :

\text { Plug in the value } x=1

=\dfrac{1}{2}\cdot \:1^2\arctan \left(1^2\right)-\dfrac{1}{4}\ln \left|1^4+1\right|

=\dfrac{\pi }{8}-\dfrac{1}{4}\ln \left(2\right)

═════════════

\sf{\int _a^bf\left(x\right)dx=F\left(b\right)-F\left(a\right)=\lim _{x\to \:b-}\left(F\left(x\right)\right)-\lim _{x\to \:a+}\left(F\left(x\right)\right)}

=\dfrac{\pi }{8}-\dfrac{1}{4}\ln \left(2\right)-0

\large\boxed{\sf{=\dfrac{\pi }{8}-\dfrac{1}{4}\ln \left(2\right)}}


EliteSoul: Great!
Similar questions