Math, asked by Anonymous, 2 days ago

Evaluate this integral

 \int \limits _0^ \infty t {e}^{ - t} dt

Answers

Answered by senboni123456
6

Step-by-step explanation:

We have,

 \displaystyle \int^{ \infty } _{0}  \: t {e}^{ - t}  \: dt

Solving by IBP,

 \displaystyle  =  \left[ t\int {e}^{ - t}  \: dt \right]^{ \infty } _{0} -  \int^{ \infty } _{0}  \left \{  \dfrac{d}{dt}(t)  \cdot\int {e}^{ - t}  \: dt\right \} dt\\

 \displaystyle  =  -  \left[ t \cdot {e}^{ - t} \right]^{ \infty } _{0} -  \int^{ \infty } _{0}  \left \{  1 \cdot( -  {e}^{ - t} )\right \} dt\\

 \displaystyle  =  -  \left[ t \cdot {e}^{ - t} \right]^{ \infty } _{0}  +  \int^{ \infty } _{0}    {e}^{ - t}  dt\\

 \displaystyle  =  -  \left[ t \cdot {e}^{ - t} \right]^{ \infty } _{0}   -     [ {e}^{ - t}  ]^{ \infty } _{0}\\

 \displaystyle  =  - 0   -     [ {e}^{ -  \infty }  -  {e}^{0}  ]\\

 \displaystyle  =  -     [ 0 - 1 ] = 1\\

Answered by mathdude500
8

 \green{\large\underline{\sf{Solution-}}}

Given integral is

\red{\rm :\longmapsto\: \displaystyle\int \limits _0^ \infty t {e}^{ - t} dt}

Let first evaluate

\rm :\longmapsto\:\displaystyle\int t {e}^{ - t} \: dt

We know, integration by parts

\displaystyle\int uvdx \:  = u\displaystyle\int vdx - \displaystyle\int \bigg[\dfrac{d}{dx}u\displaystyle\int vdx \bigg]dx

So, using this, we get

\rm \:  =  \:  t\displaystyle\int {e}^{ - t}dt - \displaystyle\int \bigg[\dfrac{d}{dt}t\displaystyle\int {e}^{ - t}dt\bigg]dt

\rm \:  =  \:   -  \: t {e}^{ - t} +  \displaystyle\int {e}^{ - t}dt

\rm \:  =  \:   -  \: t {e}^{ - t}  -  {e}^{ - t}

\rm \:  =  \:   -  \: [t -  1]{e}^{ - t}

So, we get

\rm :\longmapsto\:\displaystyle\int t {e}^{ - t} \: dt = [t - 1]{e}^{ - t}

Hence,

\rm :\longmapsto\:\displaystyle\int  \limits _0^ \infty t {e}^{ - t} dt = \bigg[(t - 1){e}^{ - t} \bigg]_0^ \infty

\rm \:  =  \: {e}^{ -  \infty } - (0 - 1) {e}^{0}

\rm \:  =  \: 0  + 1

\rm \:  =  \: 1

Hence,

\red{\rm :\longmapsto\: \boxed{\tt{  \:  \:  \:  \:  \:  \:  \:  \:  \: \displaystyle\int \limits _0^ \infty t {e}^{ - t} dt = 1 \:  \:  \:  \:  \:  \:  \:  \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept Used

Integration by Parts

\displaystyle\int uvdx \:  = u\displaystyle\int vdx - \displaystyle\int \bigg[\dfrac{d}{dx}u\displaystyle\int vdx \bigg]dx

Where,

  • u is the function u(x)

  • v is the function v(x)

  • u' is the derivative of the function u(x)

For integration by parts , the ILATE rule is used to choose u and v.

where,

  • I - Inverse trigonometric functions

  • L -Logarithmic functions

  • A - Arithmetic and Algebraic functions

  • T - Trigonometric functions

  • E- Exponential functions

The alphabet which comes first is choosen as u and other as v.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions