Math, asked by lastwarning, 3 months ago

Evaluate this

lim x → 0 [(1+x)⁶-1]/[(1+x)²-1]​

Attachments:

Answers

Answered by Anonymous
7

Given

  \to \displaystyle \lim_{ \tt \: x \to0} \tt \dfrac{(1 + x)^{6} - 1 }{(1 + x) {}^{2}  - 1}

Now Check the form so put x = 0 on Given equation

 \tt \to \:  \dfrac{(1 + x) ^{6} - 1 }{(1 + x) {}^{2}  - 1}

\tt \to \:  \dfrac{(1 + 0) ^{6} - 1 }{(1 + 0) {}^{2}  - 1}

\tt \to \:  \dfrac{1 - 1 }{1 - 1}  =  \dfrac{0}{0}

So it's 0/0 form we use L'hospital rule

\to \displaystyle \lim_{ \tt \: x \to0} \tt \dfrac{ \dfrac{d \{(1 + x)^{6} - 1 \}}{dx}  }{ \dfrac{d \{(1 + x) {}^{2}  - 1 \}}{dx}}

Now Using Chain Rule we get

  \to \displaystyle \lim_{ \tt \: x \to0} \tt \frac{6(1 + x) ^{6- 1} \times  \dfrac{d(1 + x)}{dx}  }{2(1 + x) ^{2 - 1} \times  \dfrac{d(1 + x)}{dx}  }

  \to \displaystyle \lim_{ \tt \: x \to0} \tt \frac{6(1 + x) ^{5} \times 1 }{2(1 + x) \times 1}

 \tt \to \:  \dfrac{6(1 + 0) {}^{5} }{2(1 + 0)}

 \tt \to \:  \dfrac{6(1) {}^{5} }{2(1)}  =  \dfrac{6}{2}  = 3

Answer is 3

Similar questions