Math, asked by rajeevverma22555, 3 months ago

Evaluate this limit , lim x tends to 0 cot theta - cosec theta .​

Answers

Answered by RISH4BH
40

GiveN :-

  • A limit is given to us and we need to evaluate that limit.
  • \displaystyle\sf \lim_{\theta \to 0 } cot\theta - cosec \theta

To Do :-

  • To evaluate the limit .

SolutioN :-

Basically if we directly substite \theta = 0 in the limit . It will lead to indeterminate form . Because the value of \sf cot\ 0^o = \infty and the value of \sf cosec\ 0^o= \infty

We will simply it . Let's do it !

\implies \displaystyle\sf\lim_{\theta \to 0} cot\theta - cosec\theta

\implies \displaystyle\sf\lim_{\theta \to 0} \dfrac{cos\theta}{sin\theta}-\dfrac{1}{sin\theta}

\implies \displaystyle\sf\lim_{\theta \to 0} \dfrac{cos\theta-1}{sin\theta}

\implies \displaystyle\sf\lim_{\theta \to 0}\dfrac{(cos\theta-1)(cos \theta +1)}{sin\theta(cos\theta+1)}

\implies \displaystyle\sf\lim_{\theta \to 0}\dfrac{cos^2\theta-1}{sin\theta(cos\theta+1)}

\implies \displaystyle\sf\lim_{\theta \to 0} \dfrac{-1(1-cos^2\theta)}{sin\theta(cos\theta+1)}

\implies \displaystyle\sf\lim_{\theta \to 0}\dfrac{\cancel{-sin^2\theta}}{ \cancel{sin\theta}(cos\theta+1)}

\implies \displaystyle\sf\lim_{\theta \to 0}\dfrac{-sin\theta}{1+cos\theta}

\rule{200}2

\red{\bigstar}\underline{\textsf{ Now put the value of limit.  }}

\sf\to \dfrac{-sin 0^{\circ}}{1+cos0^{\circ}}\\\\\sf\to \dfrac{-0}{1+1}\\\\\sf\to \dfrac{0}{2} \\\\\sf\to \pink{\textsf{\textbf{ 0 }}} \qquad\qquad\bigg\lgroup \red{\tt Required \ Answer }\bigg\rgroup

\rule{200}2

Attachments:
Similar questions