Math, asked by JuliusFreezer, 1 month ago

Evaluate this please​

Attachments:

Answers

Answered by MrImpeccable
7

ANSWER:

To Evaluate:

\:\:\bullet\:\:\dfrac{x^p}{x^p+x^q}+\dfrac{1}{x^{p-q}+1}

Solution:

We are given that,

\implies\dfrac{x^p}{x^p+x^q}+\dfrac{1}{x^{p-q}+1}

We know that,

\hookrightarrow a^{m-n}=\dfrac{a^m}{a^n}

So,

\implies\dfrac{x^p}{x^p+x^q}+\dfrac{1}{x^{p-q}+1}

\implies\dfrac{x^p}{x^p+x^q}+\dfrac{1}{\frac{x^p}{x^q}+1}

On taking LCM,

\implies\dfrac{x^p}{x^p+x^q}+\dfrac{1}{\frac{x^p}{x^q}+1}

\implies\dfrac{x^p}{x^p+x^q}+\dfrac{1}{\frac{x^p+x^q}{x^q}}

Now, transposing x^q from denominator to numerator,

\implies\dfrac{x^p}{x^p+x^q}+\dfrac{1}{\frac{x^p+x^q}{x^q}}

\implies\dfrac{x^p}{x^p+x^q}+\dfrac{x^q}{x^p+x^q}

So,

\implies\dfrac{x^p+x^q}{x^p+x^q}

Cancelling x^p+x^q in both denominator and numerator,

\implies 1

Therefore,

\bf\implies\dfrac{x^p}{x^p+x^q}+\dfrac{1}{x^{p-q}+1}=1

Similar questions