Math, asked by snehaaagupta2002, 1 year ago

evaluate this question​

Attachments:

Answers

Answered by akhileshbisht108
1

Answer:

\boxed{\lim_{x\rightarrow 0} \dfrac{\text{sin}(x^{2})}{x(\text{sin}x)}=1}

Step-by-step explanation:

The given expression is as follows:

\boxed{\lim_{x\rightarrow 0} \dfrac{\text{sin}(x^{2})}{x(\text{sin}x)}}

The property used to solve the above expression is as shown below:

\boxed{\lim_{x\rightarrow0}\dfrac{\text{sin}(x)}{x}=1}

Solve the given expression as shown below:

\boxed{\begin{aligned}\lim_{x\rightarrow 0} \dfrac{\text{sin}(x^{2})}{x(\text{sin}x)}&=\lim_{x\rightarrow0}\left(\dfrac{\text{sin}(x)^{2}}{x\cdot x\cdot \frac{1}{x}\cdot \text{sin}x}\right)\\&=\lim_{x\rightarrow0}\left(\dfrac{\text{sin}(x)^{2}}{x^{2}}\right)\cdot \lim_{x\rightarrow0}\left(\dfrac{1}{\frac{\text{sin}x}{x}}\right)\\&=1\cdot 1\\&=1\end{aligned}}

Therefore, the simplified value of the given expression is \boxed{\bf 1}.

Similar questions