Math, asked by officialraman76, 2 months ago

Evaluate this question​

Attachments:

Answers

Answered by guptaashesh4
0

Answer:

Step-by-step explanation:

65x ^3

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\sf {x}^{2} \: cosx \: dx

Let assume that

\rm :\longmapsto\:I \:  =  \: \displaystyle\int\sf {x}^{2} \: cosx \: dx

We know,

Integration by Parts,

\rm :\longmapsto\:\displaystyle\int\sf \: uvdx = u\displaystyle\int\sf \: vdx - \displaystyle\int\sf \: \bigg(\dfrac{d}{dx}u\displaystyle\int\sf \: vdx\bigg)dx

Here,

\rm :\longmapsto\:u =  {x}^{2}

and

\rm :\longmapsto\:v = cosx

So,

\rm :\longmapsto\:I \:  =  \: \displaystyle\int\sf {x}^{2} \: cosx \: dx

\rm \:  =  \:  \:  {x}^{2} \displaystyle\int\sf \: cosxdx - \displaystyle\int\sf \: \bigg(\dfrac{d}{dx} {x}^{2} \displaystyle\int\sf \: cosxdx\bigg)dx

We know,

 \boxed{ \bf{ \: \displaystyle\int\sf \: cosxdx = sinx + c}}

and

 \boxed{ \sf{ \: \dfrac{d}{dx} {x}^{2} = 2x }}

So, using these

\rm \:  =  \:  \: {x}^{2}sinx - \displaystyle\int\sf2x \: sinx \: dx

\rm \:  =  \:  \:  {x}^{2}sinx - 2\bigg \{ x\displaystyle\int\sf \: sinxdx - \displaystyle\int\sf \: \bigg(\dfrac{d}{dx}x\displaystyle\int\sf \: sinxdx\bigg)dx\bigg \}

We know,

 \boxed{ \bf{ \: \displaystyle\int\sf \: sinxdx =  -  \: cosx + c}}

and

 \boxed{ \sf{ \: \dfrac{d}{dx} {x} = 1 }}

\rm \:  =  \:  \:  {x}^{2}sinx - 2\bigg \{  - x \: cosx  + \displaystyle\int\sf \:cosx \: dx \bigg \}

\rm \:  =  \:  \:  {x}^{2}sinx - 2\bigg \{  - x \: cosx  + sinx \bigg \} + c

\rm \:  =  \:  \:  {x}^{2}sinx + 2x \: cosx \:  -  \:2sinx  + c

Hence,

 \boxed{ \rm{\displaystyle\int\bf {x}^{2}cosxdx =  \:  \:  {x}^{2}sinx + 2x \: cosx \:  - 2sinx  + c}}

Basic Information :-

Integration by Parts

✏️See the rule:

\rm :\longmapsto\:\displaystyle\int\sf \: uvdx = u\displaystyle\int\sf \: vdx - \displaystyle\int\sf \: \bigg(\dfrac{d}{dx}u\displaystyle\int\sf \: vdx\bigg)dx

Here,

  • u is the function u(x)

  • v is the function v(x)

  • u' is the derivative of the function u(x)

For integration by parts ,

  • The ILATE rule is used to choose u and v.

where,

  • I - Inverse trigonometric functions

  • L -Logarithmic functions

  • A - Arithmetic and Algebraic functions

  • T - Trigonometric functions

  • E- Exponential functions

The alphabet which comes first is choosen as u and other as v.

Similar questions