Math, asked by tps07359, 2 months ago

evaluate this question and write the answer ​

Attachments:

Answers

Answered by 12thpáìn
253

 \\\underline { \pink{\bf{\text{Question}}}}\\\\

  • \sf  \implies\dfrac{ {x}^{5 + n }\times ( {x}^{2}) ^{3n + 1}   }{ {x}^{7n - 2} }

\\\underline { \underline{\bf{\pink{\text{Answer=\bf\green{{x⁹}}}}}}}

\\\\ \underline{\bf{Step \:  by \:  step  \: explanation}}

\\ \sf  \implies\dfrac{ {x}^{5 + n }\times ( {x}^{2}) ^{3n + 1}   }{ {x}^{7n - 2} }

\sf  \implies\dfrac{ {x}^{5 + n }\times ( {x}^{(2 \times 3n )+ (2 \times 1)})   }{ {x}^{7n - 2} }

\sf  \implies\dfrac{ {x}^{5 + n }\times  {x}^{6n + 2}  }{ {x}^{7n - 2} }

~~~~\sf  \implies\dfrac{ {x}^{5 + n  + 6n + 2}  }{ {x}^{7n - 2} }

~~~~\sf  \implies\dfrac{ {x}^{7n + 7}  }{ {x}^{7n - 2} }

~~~~~{\sf  \implies  {x}^{7n + 7 - (7n - 2)} }

~~~~~~{\sf  \implies  {x}^{7n + 7 - 7n + 2} }

~~~~~~~\overbrace↑^{\underbrace{\underline{\boxed{\underline{\sf  \implies  \orange{{x}^{9}}}}}}}\\\\

Laws of exponents

~~~~\begin{gathered}\sf {a}^{m} \times {a}^{n} = {a}^{m + n} \: \: \: \: \: \: \: \: \: \: \sf {a}^{m} \div {a}^{n} = {a}^{m - n} \\ \sf{( {a}^{m} ) ^{n} = {a}^{mn} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: a {}^{m} \times {n}^{m} = (ab) ^{m} } \\ \sf{a}^{0} = 1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: {\frac{ {a}^{m} }{ {b}^{m} }= \left( \frac{a}{b} \right) ^{m} }\\\\\end{gathered}

Answered by badolamamta68
1

Step-by-step explanation:

hope this helps you

Mark me as brainliest

Attachments:
Similar questions