Math, asked by Dev290702, 4 months ago

evaluate this question of beta Gamma function ​

Attachments:

Answers

Answered by BrainlyIAS
17

Beta and Gamma Functions :

Question is having some error i.e., " Limits are running from 0 to 1 only "

Question :

 \; \displaystyle \sf \red{\int_{0}^{1} \left( \ln \dfrac{1}{x}\right)^{n-1}\ dx}

Solution :

\displaystyle \sf \int_{0}^{1} \left( \ln \dfrac{1}{x}\right)^{n-1}\ dx

Let ,

\sf u = \ln \dfrac{1}{x}

⇒ u = - ln x

⇒ x = e⁻ᵘ

dx = - e⁻ᵘ du

Lower limit of u :

Upper limit of u : 0

\longrightarrow \displaystyle \sf \int_{\infty}^{0} \left( u \right)^{n-1}\ (- e^{-u}du)

\longrightarrow \displaystyle \sf - \int_{\infty}^{0}  u^{n-1}\  e^{-u}\ du

\longrightarrow \displaystyle \sf \int_{0}^{\infty}  u^{n-1}\  e^{-u}\ du

\bullet\ \;  \orange{\displaystyle \sf \int_{0}^{\infty} x^{n-1}e^{-x}\ dx = \Gamma (n)}

\longrightarrow\ \displaystyle \sf \pink{\Gamma (n)}

★ ════════════════════ ★

Similar questions