Math, asked by jay20694, 11 months ago

Evaluate this question please..

Attachments:

Answers

Answered by Anonymous
23

Answer :-

The answer is c) (√13 + 3)/2.

Solution :-

 \sf x =  \sqrt{10 + 3 \times  \sqrt{10 - 3 \times  \sqrt{10 + 3 \times  \sqrt{10 - ....... \infty} } } }

 \sf  \implies x =  \sqrt{10 + 3 \times  \sqrt{10 - 3 \times \bigg(  \sqrt{10 + 3 \times  \sqrt{10 - ....... \infty} } }  \bigg)} \\\\\\ \sf \implies x =  \sqrt{10 + 3 \sqrt{10 - 3x} } \\

Squaring on both sides

 \\  \sf  \implies x ^2 = 10 + 3 \sqrt{10 - 3x}  \\\\\\  \sf \implies x^2 - 10 = 3 \sqrt{10 -3x} \\

Squaring on both sides

 \\   \sf \implies (x^2 - 10)^2 = 9(10 -3x) \\\\\\  \sf  \implies  x^4 + 100 - 20x^2 = 90 - 27x \\\\\\  \sf \implies  x^4 - 20x^2 + 27x + 100 - 90 = 0 \\\\\\  \sf \implies x^4 - 20x^2 + 27x + 10 = 0 \\\\\\  \sf \implies (x - 2)(x^3 + 2x^2 - 16x - 5) = 0 \\\\\\  \sf \implies (x - 2)(x + 5)(x^2 - 3x - 1) = 0 \\\\\\  \sf \implies x  - 2 = 0 \: or \: x + 5 = 0 \: or \:  x^2 - 3x - 1 = 0 \\\\\\  \sf \implies x = 2 \: or \: x =  - 5 \: or \: x^2 - 3x - 1 =0 \\

(Neglect 2 and - 5 since 2 is not there in options and x is under root so x can't be negative )

 \\  \sf  \implies x^2 - 3x - 1 = 0 \\

Using quadratic formula i.e, {-b ± √(b²-4ac)}/2a

and here a = 1, b = - 3, c = - 1

 \sf \implies x =  \dfrac{ - ( - 3) \pm  \sqrt{ ( - 3)^2 - 4(1)( - 1)} }{2(1)} \\\\\\  \sf  \implies x =  \dfrac{3 \pm \sqrt{9 + 4} }{2} \\\\\\  \sf \implies x =  \dfrac{3 \pm  \sqrt{13} }{2}  \\\\\\  \sf \implies x =  \dfrac{3 +  \sqrt{13} }{2}  \: or \: x =  \dfrac{3 -  \sqrt{13}}{2}

(Neglecting x = (3 - √13)/2 )

 \sf \implies x =  \dfrac{  \sqrt{13} + 3}{2}

Therefore the answer is c) (√13 + 3)/2.


Anonymous: Nice answer
Anonymous: Thanks
Anonymous: Nice answer
Anonymous: Thanks
Similar questions