Math, asked by ddgadhali, 10 months ago

Evaluate till the end

Attachments:

Answers

Answered by BrainlyConqueror0901
10

{\bold{\underline{\underline{Answer:}}}}

{\bold{\frac{tan^{2}\:60\degree+4\:cos^{2}\:45\degree+3\:sec^{2}\:30\degree+5\:cos^{2}\:90\degree}{cosec\:30\degree+sec\:60\degree-cot^{2}\:30\degree=15}}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{To \: Find : } \\  \implies  \frac{tan^{2} 60 \degree + 4 cos ^{2}45 \degree + 3 \: sec ^{2} 30 \degree + 5 \:  {cos}^{2}  90 \degree}{ {cosec} \:  30 \degree +  {sec} \: 60 \degree -  {cot}^{2} 30 \degree}  = ?

• According to given question :

 \circ{ \:  \: tan \: 60 \degree =  \sqrt{3} }  \\ \\  \circ{ \:  \: cos\: 45 \degree =  \frac{1}{ \sqrt{2} }  } \\  \\  \circ{ \:  \:sec \: 30\degree =   \frac{2}{ \sqrt{3} }  } \\  \\  \circ{ \:  \: cos \: 90\degree =  0} \\  \\  \circ{ \:  \: cosec \: 30 \degree =  2 } \\  \\  \circ{ \:  \: sec\: 60 \degree =  2 } \\  \\  \circ{ \:  \: cot\: 30\degree =   \sqrt{3} } \\  \\  \bold{substituting \: values \: given \: above : } \\   \implies  \frac{tan^{2} 60 \degree + 4 \:  cos ^{2}45 \degree + 3 \: sec ^{2} 30 \degree + 5 \:  {cos}^{2}  90 \degree}{ {cosec} \:  30 \degree +  {sec}  \: 60 \degree -  {cot}^{2}  \:  30 \degree}  \\   \\  \implies  \frac{ ({ \sqrt{3} })^{2} + 4 \times  (\sqrt{2})^{2} + 3 \times  (\frac{2}{ \sqrt{3} }) ^{2}  + 5 \times 0   }{2 + 2 - ( \sqrt{3} )^{2} }  \\  \\  \implies  \frac{3 + 4 \times 2 + 3 \times  \frac{4}{3}  + 0}{4 - 3}  \\  \\  \implies  \frac{3 + 8 + 4}{1}  \\  \\   \bold{\implies 15}

Answered by jatindevrajput
2

  \implies  \frac{tan^{2} 60 \degree + 4 \:  cos ^{2}45 \degree + 3 \: sec ^{2} 30 \degree + 5 \:  {cos}^{2}  90 \degree}{ {cosec} \:  30 \degree +  {sec}  \: 60 \degree -  {cot}^{2}  \:  30 \degree}  \\   \\  \implies  \frac{ ({ \sqrt{3} })^{2} + 4 \times  (\sqrt{2})^{2} + 3 \times  (\frac{2}{ \sqrt{3} }) ^{2}  + 5 \times 0   }{2 + 2 - ( \sqrt{3} )^{2} }  \\  \\  \implies  \frac{3 + 4 \times 2 + 3 \times  \frac{4}{3}  + 0}{4 - 3}  \\  \\  \implies  \frac{3 + 8 + 4}{1}  \\  \\   \bold{\implies 15}

Similar questions