Math, asked by raajpcs2, 1 year ago

Evaluate under root 0.9 up to 3 decimal places
Step by step

Answers

Answered by amitnrw
51

Answer:

0.949

Step-by-step explanation:

Evaluate under √0.9 up to 3 decimal places

First we will simplify the 0.9 by removing decimal

0.9 = \frac{9}{10}

\sqrt{0.9} = \sqrt{\frac{9}{10}}

Lets multiply the numerator & Denominator by 10 to make the denominator as whole square.

\sqrt{0.9} = \sqrt{\frac{9\times10}{10\times10}} \\\\\sqrt{0.9} = \sqrt{\frac{3\times3\times10}{10\times10}} \\\\\sqrt{0.9} = \frac{3}{10} \times \sqrt{10}

Putting values of √10 = 3.162

\sqrt{0.9} = \frac{3}{10} \times 3.162\\\\\sqrt{0.9} = \frac{3}{10} \times 3.162\\\\\sqrt{0.9} = \frac{9.486}{10}\\\\\sqrt{0.9} = 0.9486\\\\\sqrt{0.9} = 0.949


Swarup1998: Nice answer! :)
Answered by vashushubu77
12

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge{\blue{\boxed{\orange{\boxed{\mathcal{\purple{HELLO}}}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge\star\underline\mathtt\purple{Answer:-}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge\mathtt{≈ \: 0.949}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge\star\underline\mathtt\purple{Explanation-}

\huge\mathtt { = > 0.9 =  \frac{9}{10} }

\huge\mathtt {we \: can \: write \: it }  \\ \\ \huge\mathtt { as \:  =}

\huge\mathtt{ \sqrt{0.9}  =  \sqrt{ \frac{9  \times 10}{10 \times 10} } }

\huge\mathtt{=  \sqrt{0.9}}  \\  \\  \huge\mathtt{ \:  \:  \:  \:  \:  \:  \:  \: =  \frac{3}{10}  \times  \sqrt{10} }

\huge\mathtt{as \:  \sqrt{10}}  \\  \huge\mathtt{= 3.162} \\  \\ \:  \:  \:  \:  \:  \huge\mathtt{  \sqrt{0.9}  = \frac{3}{10}  \times  \frac{3162}{1000} }

\huge\mathtt{ =  \sqrt{0.9}} \\  \\  \huge\mathtt{ =  \frac{9.486}{10} } \\  \\ \huge\mathtt{ \sqrt{0.9}  = 0.9486} \\  \\ \huge\mathtt{ \sqrt{0.9} \: ≈ \: 0.9490} \\  \\ \huge\mathtt{ \sqrt{0.9} \:  = 0.949}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

❥ʜᴏᴘᴇ ɪᴛ ʜᴇʟᴘꜱ

Similar questions