Math, asked by shivanksingh2003, 6 months ago

Evaluate using dentities:(101) 2

Answers

Answered by Anonymous
28

┏─━─━─━─━∞◆∞━─━─━─━─┓ ✭✮ӇЄƦЄ ƖƧ ƳƠƲƦ ƛƝƧƜЄƦ✮✭

┗─━─━─━─━∞◆∞━─━─━─━─┛

⠀⠀⠀⠀⠀⠀⠀

What to do :

⠀⠀⠀⠀⠀⠀⠀

 \bf \: Evaluate  \: using \: identities:(101)  {}^{2}

⠀⠀⠀⠀⠀⠀⠀

Solution :

⠀⠀⠀⠀⠀⠀⠀

 \bf \:\color{red}  \implies {101}^{2}

⠀⠀⠀⠀⠀⠀⠀

 \bf \:\color{red}  \implies {(100 + 1)}^{2}

⠀⠀⠀⠀⠀⠀⠀

 \bf \:\color{orange} using \: identity

⠀⠀⠀⠀⠀⠀⠀

 \bf \:\color{orange}  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

⠀⠀⠀⠀⠀⠀⠀

 \bf \:\color{red}  \implies {100}^{2}  + 2 \times 100 \times 1 +  {1}^{2}

⠀⠀⠀⠀⠀⠀⠀

 \bf \:\color{red}  \implies10000 + 200 + 1

⠀⠀⠀⠀⠀⠀⠀

 \bf \:\color{red}  \implies10201

⠀⠀⠀⠀⠀⠀⠀

More Identities

⠀⠀⠀⠀⠀⠀⠀

  • \bf \:\color{green}  (x  - y) {}^{2}  =  {x}^{2}  - 2xy +  {y}^{2}

⠀⠀⠀⠀⠀⠀⠀

  • \bf \:\color{magenta} {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

⠀⠀⠀⠀⠀⠀⠀

  • \bf \:\color{green}(x + a)(x + b) =  {x}^{2}  + (a + b) x + ab

⠀⠀⠀⠀⠀⠀⠀

  • \bf \:\color{magenta} {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x - y)

⠀⠀⠀⠀⠀⠀⠀

  • \bf \:\color{green} {(x - y)}^{3}  =  {x}^{3}  - 3 {x}^{2} y + 3x {y}^{2}  -  {y}^{3}

⠀⠀⠀⠀⠀⠀⠀

Answered by Anonymous
31

 \bf \huge {\underline {\underline \red{AnSwEr}}}

 \bf  {101}^{2}

 \bf  {(100 + 1)}^{2}

 \bf using \: identity

 \bf  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

 \bf  {100}^{2}  + 2 \times 100 \times 1 +  {1}^{2}

 \bf 10000 + 200 + 1

 \bf 10201

Similar questions