Math, asked by jen26350, 1 day ago

evaluate using exponent rules. (-2²) x (-2)³​

Answers

Answered by chxcykoo
0

Answer:

 {( - 2}^{2} ) \times  {( - 2)}^{3} ) \\  =  { ( - 2)}^{2 + 3}  \\   =  {( - 2)}^{5}

Step-by-step explanation:

 \tt \: according \: to \: the \:  law \: of \: exponent

Let a/b be any rational number , and m and n be any integers. Then, we have:

 \pink{ \frac{a}{b}^{m}  \times  \frac{a}{b} ^{n}   =  \frac{a}{b}^{m + n} }

Answered by IIDakshII
0

ǫᴜᴇsᴛɪᴏɴ →

evaluate using exponent rules. (-2²) x (-2)³

ᴀɴsᴡᴇʀ →

TO DETERMINE

The value of

\longmapsto\tt{(-2²)  \: x  \: (-2)³}

FORMULA TO BE IMPLEMENTED

\longmapsto\tt{a^n × a^m = a^m+^n}

We are aware of the formula on indices that

EVALUATION

EVALUATION

\sf{ {( - 2)}^{2} \times {(2)}^{3} }(−2)

2

×(2)

3

\tt{ = {( 2)}^{2} \times {(2)}^{3} \: \: \: \: \: \big( \: \because \: {( - a)}^{2} = {a}^{2} \big) }=(2) </p><p>2

 ×(2)³ (∵(−a)² = a²)\sf{ = {( 2)}^{2 + 3} }=(2) </p><p>2+3

\sf{ = {2}^{5} }=2 </p><p>5

\sf{ = 2 \times 2 \times 2 \times 2 \times 2}=2×2×2×2×2

\longmapsto\tt{ = 32 =32}

Similar questions