Math, asked by akashsen8002, 3 months ago

evaluate using identites 54^2 - 46^2

Answers

Answered by mansijnv2000
1

Answer:

800

Step-by-step explanation:

(a+b)(a-b)=a^2-b^2

(54+46)(54-46)

100*8

800

Answered by Ҡαηнα
4

Answer :

  • 800

Using Formula :

 \small \boxed{ \begin{gathered} \bf (a + b)(a - b) \\  \rm=a(a-b)+b(a-b) \\ \rm=a^2-ab+ba-b^2 \\  \rm=a^2-ab+ab-b^2 \\ \bf=a^2-b^2  \end{gathered}}

Solution :

\bf (54 + 46)(54 - 46) \\ \rm=54(54-46)+46(54-46) \\ \rm=54^2-(54 \times46)+(46 \times54)-46^2 \\  \rm =54^2-(54 \times46)+(54  \times46)-46^2 \\  = 54^2 \cancel{-2484} \:  \:  \cancel{+2484}-46^2  \\  \bf=54^2-46^2 \\   = 2916 -2116 \\  =  \large \bf{800}

More identities used frequently_in algebra are :

  \small\boxed{ \begin{gathered} 1. \:  \rm \: (x + a)(x + b) =  {x}^{2} + (a + b)x + ab  \\ 2. \:  \rm \: (a + b) {}^{2} =  {a}^{2}  + 2ab +  {b}^{2}  \\ 3. \:  \rm \: (a + b) {}^{2} =  {a}^{2}   -  2ab +  {b}^{2}  \\ 4. \:  \rm \: (a + b)(a - b) =  {a}^{2}   - {b}^{2}  \end{gathered}}

Similar questions