Math, asked by ndhimundhra99, 17 days ago

evaluate using identities.​

Attachments:

Answers

Answered by Anonymous
1

Algebraic Identities

The following standard algebraic identity will be used to solve the problem:

\[\boxed{a^2 + b^2 = a^2 + b^2 + 2ab}\]

We have been given that, a + b = 7 and ab = 10. With this information, we have been asked to find out the value of a^2 + b^2.

We know that,

\[\implies \boxed{a^2 + b^2 = a^2 + b^2 + 2ab}\] \\

By substituting the given values in the above identity, we get:

\implies a^2 + b^2 = a^2 + b^2 + 2(10) \\ \\ \implies (a + b)^2 = a² + b² + 20 \\ \\ \implies {7}^{2} = a^2 + b^2 + 20 \\ \\ \implies 49 = a^2 + b^2 + 20 \\ \\ \implies 49 - 20 = {a}^{2} + {b}^{2} \\ \\ \implies \boxed{{a}^{2} + {b}^{2} = 29}

\rule{90mm}{2pt}

MORE TO KNOW

\boxed{\begin{array}{l}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\\frak{1.}\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\\frak{2.}\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\\frak{3.}\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\\frak{4.}\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\\frak{5.}\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\\frak{6.}\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\\frak{7.}\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\\frak{8.}\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{array}}

Answered by jaswasri2006
3

\underline{ \pink{ \rm GIVEN \:  \: DATA\: \: : }}

 \rm a + b = 7

 \rm ab = 10

 \\

\underline{ \purple{ \rm TO \: \: FIND \: \: : }}

 \rm the \:  \:  \: value \:  \: of \:  \:  \boxed{ \rm {a}^{2}  +  {b}^{2} }

 \\

✯ \: \underline{ \red{ \rm SOLUTION \: \: : }}

By using the identity,

 \boxed{ ⍟ \:  \:  \color{blue}{  \boxed{\boxed{ \color{black} \bf {a}^{2}  +  {b}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab}}}}

so by applying the values,

 \rm➠  \:  \:  {(a + b)}^{2}    =  {a}^{2}  +  {b}^{2}  + 2(10)

\rm➠ \:  \:  {(7)}^{2}  =  {a}^{2}  +  {b}^{2}  + 20

\rm➠ \:  \:  {a}^{2}  +  {b}^{2}  = 49 - 20

  \color{cyan}{ \boxed{ \boxed{  \red\ast \:  \:  \color{brown} \boxed{ \boxed{ \green{ \rm {a}^{2}  +  {b}^{2}  = 29}}}}}}

Similar questions