Math, asked by vaarijangra, 4 months ago

evaluate using identity (x-2/3y)^3 ​

Answers

Answered by puneetdevika
0

Answer:

( a - b)³ = a³ - b³ -3ab (a-b)

Then,

(x- \frac{2}{3y})^{3}= x^{3}- (\frac{2}{3y})^{3}- \frac{2x}{y}(x- \frac{2}{3y})(x−

3y

2

)

3

=x

3

−(

3y

2

)

3

y

2x

(x−

3y

2

)

⇒ x^{3}- \frac{8}{27y^{3}} - \frac{2x^{2}}{y}+ \frac{2x}{3y^{2}}x

3

27y

3

8

y

2x

2

+

3y

2

2x

Answered by abhishek7528
0

Answer:

We know that,

(a-b)³ = a³- b³ - 3ab(a-b)

[(x-2)/3y]³

=(x-2)³/(3y)³

= x³ - 8 - 6x(x-2) / 27y³

 

Step-by-step explanation:

pls mark on brainlist

Similar questions