Math, asked by chaya4637, 2 months ago

evaluate using substitution method ,integral (tan^-1x)^3/1+x^2 dx​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Formula Used :-

 \red{ \boxed{ \sf{ \dfrac{d}{dx} {tan}^{ - 1}x  \:  =  \:  \frac{1}{1 +  {x}^{2} } }}}

 \red{ \boxed{ \sf{\displaystyle\int\tt  {x}^{n} \: dx  \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c}}}

Now,

Given Integral is

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{ {( {tan}^{ - 1} x)}^{3} }{1 +  {x}^{2} } \: dx

\rm :\longmapsto\:Let \: I \:  =  \: \displaystyle\int\tt \dfrac{ {( {tan}^{ - 1} x)}^{3} }{1 +  {x}^{2} } \: dx

Now, we use method of Substitution.

 \red{\rm :\longmapsto\:Let \:  {tan}^{ - 1}x \:  =  \: y}

On differentiating both sides w. r. t. x, we get

 \red{\rm :\longmapsto\:\dfrac{d}{dx} \:  {tan}^{ - 1}x \:  =  \dfrac{d}{dx}\: y}

 \red{\rm :\longmapsto\:\dfrac{1}{1 +  {x}^{2} } \:   \:  =  \dfrac{dy}{dx}\: }

 \red{\rm :\longmapsto\:\dfrac{dx}{1 +  {x}^{2} } \:   \:  =  dy}

So, on substituting all these values, in given integral, we get

\rm :\longmapsto\:I \:  =  \: \displaystyle\int\tt  {y}^{3} \: dy

 \rm \:  \:  =  \: \dfrac{ {y}^{3 + 1} }{3 + 1}  + c

 \rm \:  \:  =  \: \dfrac{ {y}^{4} }{4}  + c

 \rm \:  \:  =  \: \dfrac{ {( {tan}^{ - 1}x) } \: ^{4} }{4}  + c

Hence,

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{ {( {tan}^{ - 1} x)}^{3} }{1 +  {x}^{2} } \: dx =  \: \dfrac{ {( {tan}^{ - 1}x) } \: ^{4} }{4}  + c

Additional Information :-

Let take few more examples of Substitution

Example 1.

Evaluate

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{ {e}^{ {tan}^{ - 1} x} }{1 +  {x}^{2} } \: dx

Solution :-

 \red{\rm :\longmapsto\:Let \:  {tan}^{ - 1}x \:  =  \: y}

On differentiating both sides w. r. t. x, we get

 \red{\rm :\longmapsto\:\dfrac{d}{dx} \:  {tan}^{ - 1}x \:  =  \dfrac{d}{dx}\: y}

 \red{\rm :\longmapsto\:\dfrac{1}{1 +  {x}^{2} } \:   \:  =  \dfrac{dy}{dx}\: }

 \red{\rm :\longmapsto\:\dfrac{dx}{1 +  {x}^{2} } \:   \:  =  dy}

So, On substituting all these values in above integral, we get

 \rm \:  \:  =  \: \displaystyle\int\tt  {e}^{y} \: dy

 \rm \:  \:  =  \:  {e}^{y} \:  +  \: c

\red{\bigg \{ \because \: \displaystyle\int\tt  {e}^{x}dx =  {e}^{x}  + c \bigg \}}

 \rm \:  \:  =  \:  {e}^{ {tan}^{ - 1}x } \:  +  \: c

Hence,

\rm :\longmapsto\:\displaystyle\int\bf \dfrac{ {e}^{ {tan}^{ - 1} x} }{1 +  {x}^{2} } \: dx =  {e}^{ {tan}^{ - 1} x}  + c

Similar questions