Evaluate using suitable identities.
If 2x + 3y = 16 and xy = 10 , find the value of 4x^2 + 9y^2
Answers
Answered by
17
Step-by-step explanation:
Given,
2x + 3y = 16
xy = 10
squaring on both sides
(2x + 3y )² = 16² (Using identity (a + b )² = a² + b² + 2ab )
= 4x² + 9y ² + 2 (2x)(3y) = 256
= 4x² + 9y² + 12xy = 256
xy = 10
therefore , 12xy = 12 × 10 = 120
= 4x² + 9y² + 120 = 256
4x² + 9y² = 256 - 120
4x² + 9y² = 136
Answered by
47
GIVEN :–
• 2x + 3y = 16
• xy = 10
TO FIND :–
• 4x² + 9y² = ?
SOLUTION :–
=> 2x + 3y = 16
• Square on both sides –
=> (2x + 3y)² = (16)²
▪︎ Using identity –
☆ (a + b)² = a² + b² + 2ab
• So that –
=> (2x)² + (3y)² + 2(2x)(3y) = 256
=> 4x² + 9y² + 2(6xy) = 256
=> 4x² + 9y² + 12(xy) = 256
=> 4x² + 9y² + 12(10) = 256
=> 4x² + 9y² + 120 = 256
=> 4x² + 9y² = 256 - 120
=> 4x² + 9y² = 136
▪︎ Hence , The value of 4x² + 9y² = 136.
Similar questions
English,
3 months ago
Biology,
3 months ago
French,
3 months ago
Math,
7 months ago
Computer Science,
11 months ago
Math,
11 months ago
Social Sciences,
11 months ago