Evaluate using suitable identity :( 0.7x0.7x0.7 + 0.3x0.3x0.3) / (0.7x0.7 + 0.3 x0.3 - 0.7x0.3 )
Answers
Answer:
make squares and cubes and then take common factors and use identity
The value of the expression ( 0.7 x 0.7 x 0.7 + 0.3 x 0.3 x 0.3 ) / ( 0.7 x 0.7 + 0.3 x 0.3 - 0.7 x 0.3 ) is 1.
Given: The expression,
( 0.7 x 0.7 x 0.7 + 0.3 x 0.3 x 0.3 ) / ( 0.7 x 0.7 + 0.3 x 0.3 - 0.7 x 0.3 ).
To Find: The value of the expression ( 0.7 x 0.7 x 0.7 + 0.3 x 0.3 x 0.3 ) / ( 0.7 x 0.7 + 0.3 x 0.3 - 0.7 x 0.3 )
Solution:
In this question, we shall use the identity which states that,
a³ + b³ = ( a + b ) × ( a² - ab + b² ) ...(1)
Where a and b are integer values.
Coming to the numerical, we are required to find the value of the expression,
( 0.7 x 0.7 x 0.7 + 0.3 x 0.3 x 0.3 ) / ( 0.7 x 0.7 + 0.3 x 0.3 - 0.7 x 0.3 )
If we say that a = 0.7 and b = 0.3, then we can rewrite the expression as,
( a³ + b³ ) / ( a² + b² - ab ) ....(2)
Now, from (1), we can that;
a³ + b³ = ( a + b ) × ( a² - ab + b² )
Putting (1) in the numerator of (2), we get;
( a³ + b³ ) / ( a² + b² - ab )
⇒ [ ( a + b ) × ( a² - ab + b² ) ] / ( a² + b² - ab )
⇒ ( a + b ) ...(3)
Putting values a = 0.7 and b = 0.3 in (3), we get;
⇒ ( 0.7 + 0.3 )
⇒ 1
Hence, the value of the expression ( 0.7 x 0.7 x 0.7 + 0.3 x 0.3 x 0.3 ) / ( 0.7 x 0.7 + 0.3 x 0.3 - 0.7 x 0.3 ) is 1.
#SPJ2