Math, asked by akshDeep5024, 11 months ago

Evaluate using suitable identity 107^3

Answers

Answered by chaudharyvikramc39sl
1

Answer:

1225043

Step-by-step explanation:

We are given or we have to evaluate

                                     107^3

using suitable identity.

since 107 can be written as 107 = 100+7

and       107^3=(100+7)^3

we know that the Identity

            (a+b)^3=a^3+b^3+3ab(a+b)

so, substitute a = 100 and b = 7 in above identity

we get

          (100+7)^3=100^3+7^3+3(100)(7)(100+7)

                          =1000000+343+224700

                          = 1225043

#SPJ2

Answered by ushmagaur
0

Answer:

Using the identity, the simplified value of 107^3 is 1225043.

Step-by-step explanation:

Recall the identity,

(a+b)^3=a^3+b^3+3ab(a+b) . . . . . (1)

Step 1 of 1

Consider the given number as follows:

107^3 . . . . . (2)

Rewrite the number 107 as the sum of 2 numbers as follows:

107 = 100 + 7

Then, the expression (2) becomes,

(100+7)^3

Now,

Let a=100 and b=7.

Substitute the values 100 for a and 7 for b in the identity (1) as follows:

(100+7)^3=100^3+7^3+3(100)(7)(100+7)

Further, simplify the expression as follows:

(100+7)^3=1000000+343+2100(100+7)

                = 1000000 + 343 + 224700

                = 1225043

Final answer: Using the identity, the value of 107^3 is 1225043.

#SPJ2

Similar questions