Evaluate using suitableldentities 2.(b-7) ²
Answers
Answered by
1
Answer:
Let (a-b)^7 = x. Then, we have:
(a-b)^7 = x => ln((a-b)^7) = lnx => 7(ln(a-b)) = lnx => e^[7(ln(a-b)) = e^(lnx) =>
x = e^[7(ln(a-b))]
Second solution:
(a-b)^7 = [b(a/b - 1)]^7 = (b^7)[(a/b - 1)^7] = (b^7)[(a/b)^7 – 7(a/b)^6 + 21(a/b)^5 - 35(a/b)^4 + 35(a/b)^3 - 21(a/b)^2 + 7(a/b) - 1]
Third solution:
Using Newton’s binomial, we take:
(a-b)^7 = a^7 – 7(a^6)b + 21(a^5)(b^2) - 35(a^4)(b^3) + 35(a^3)(b^4) - 21(a^2)(b^5) + 7a(b^6) - b^7
Step-by-step explanation:
please mark me as brainlest
Similar questions