Math, asked by AkashLouis, 1 year ago

Evaluate with steps​

Attachments:

Answers

Answered by harnoor92
0

Answer:

 \frac{ \frac{1}{2} + 1 +  \frac{2}{ \sqrt{3} }  }{ \frac{2}{ \sqrt{3}  } +  \frac{1}{2}  + 1 }  \\ </p><p></p><p></p><p> =\frac{ \frac{ \sqrt{3}  + 2 \sqrt{3}  + 4}{2 \sqrt{3} } }{ \frac{4 +  \sqrt{3}  + 2 \sqrt{3}  }{2 \sqrt{3} } }  \\ </p><p></p><p></p><p>= \frac{ \sqrt{3 } + 2 \sqrt{3}  + 4 }{2 \sqrt{3} }  \times  \frac{2 \sqrt{3} }{4 +  \sqrt{3} + 2 \sqrt{3}  }  \\ </p><p></p><p> \frac{3 \sqrt{3} + 4 }{4 + 3 \sqrt{3} }  \\</p><p>  \frac{4 + 3 \sqrt{3} }{4 + 3 \sqrt{3} }  \times  \frac{4 - 3 \sqrt{3} }{4 - 3 \sqrt{3} }  \\   \\  \frac{ {4}^{2} -  ({3 \sqrt{3} )}^{2}  }{ {4}^{2}  -(  {3 \sqrt{3} }^{2} )}  \\  \frac{16 - 9 \times 3}{16 - 9 \times 3}  \\  \frac{16 - 27}{16 - 27}  \\  \frac{ -( 11)}{ - (11)} \\  \frac{11}{11}  = 1

MARK ME BRAINLEIST I WILL WORK HARD ON THIS QUESTION

Similar questions