Evaluate WITHOUT using trignometric table:
Question is in the attached image.

Answers
Answer:
Answer:
(Sin 18°/Cos 72°) + √3(Tan 10° × Tan 30° × Tan 40° × Tan 50° × Tan 80°) = 2
Step-by-step explanation:
We have,
(Sin 18°/Cos 72°) + √3(Tan 10° × Tan 30° × Tan 40° × Tan 50° × Tan 80°)
Now, we know that,
Sin A = Cos (90° - A)
Tan A = Cot (90° - A)
and Cot A = (1/Tan A)
So, solving,
(Sin 18°/Cos 72°) + √3(Tan 10° × Tan 30° × Tan 40° × Tan 50° × Tan 80°)
= (Cos (90° - 18°)/Cos 72°) + √3(Tan 10° × Tan 30° × Tan 40° × Tan 50° × Tan 80°)
= (Cos 72°/Cos 72°) + √3(Tan 10° × Tan 30° × Tan 40° × Tan 50° × Tan 80°)
= 1 + √3(Tan 10° × Tan 30° × Tan 40° × Tan 50° × Tan 80°)
Similarly,
= 1 + √3(Cot (90° - 10°) × Tan 30° × Cot (90° - 40°) × Tan 50° × Tan 80°)
= 1 + √3(Cot 80° × Tan 30° × Cot 50° × Tan 50° × Tan 80°)
= 1 + √3(Cot 80° × Tan 80° × Cot 50° × Tan 50° × Tan 30°)
= 1 + √3((1/Tan 80°) × Tan 80° × (1/Tan 50°) × Tan 50° × Tan 30°)
= 1 + √3(1 × 1 × Tan 30°)
We know that,
Tan 30° = (1/√3)
So,
= 1 + √3(1 × 1 × (1/√3))
= 1 + √3(1/√3)
= 1 + 1
= 2
Hence,
(Sin 18°/Cos 72°) + √3(Tan 10° × Tan 30° × Tan 40° × Tan 50° × Tan 80°) = 2
Hope it helped and believing you understood it........All the best