Math, asked by karabichoubey11, 4 months ago

Evaluate without using trigonometric tables
sin2 28° + sin? 62° + tan238° - cot2 52° + sec230°​

Answers

Answered by PixleyPanda
0

Answer:

Step-by-step explanation:

Answer is 4/3.

cos(90-A)=sinA

Therefore sin^2 28 can be written as cos^2 62

(90-28=62)

Therefore the expression becomes cos^2 62+sin^2 62 +tan^2 38 -cot^2 52

(Also cos^2 A+sin^2 A =1)

Therefore equation becomes 1 + tan^2 38 - cot^2 62.

Similarly tan(90-A)=cotA

Therefore tan^2 38= cot^2(90-38)=cot^2 62.

Now the expression is 1 + cot^2 62-cot^2 62 +1/4sec^2 30.

=> 1+1/4 sec^2 30

=>1+1/3[Since sec 30=2/square root(3) sec^2 30=4/3

1/4*sec ^2 30=(1/4)*(4/3)=1/3.]

=>4/3.

Answered by Anonymous
2

Answer:

\huge\colorbox{yellow}{Answer\:-}

 { \sin }^{2}28 +  { \sin }^{2}62 +  { \tan }^{2}38 -  { \cot }^{2}52 +  \frac{1}{4} { \sec }^{2}30

 =  { \sin }^{2}28 +  { \sin }^{2}(90 - 28) +  { \tan }^{2}38 -  { \cot }^{2}(90 - 38) +  \frac{1}{4} { \sec }^{2}30

 = ( { \sin }^{2}28 +  { \cos }^{2}28) +  { \tan }^{2}38 -  { \tan }^{2}38 +  \frac{1}{4} \times  {( \frac{2}{ \sqrt{3} } )}^{2}

 = 1 + 0 +  \frac{1}{4}  \times  \frac{4}{3}

 = 1 +  \frac{1}{3}

\pink{ =  >  \frac{4}{3}}

\huge\colorbox{yellow}{Thank\:You}

Similar questions